skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1954707

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We establish dispersive estimates and local decay estimates for the time evolution of non-self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension. In particular, we show that the decay rates in the weighted setting are the same as in the regular case after subtracting a finite rank operator corresponding to the threshold resonances. Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear Schrödinger equation around a solitary wave. It is known that the linearized operator for the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an observation of a favorable structure in the quadratic nonlinearity of the evolution equation for perturbations of solitary waves of the 1D focusing cubic NLS equation. 
    more » « less
  2. We consider the codimension one asymptotic stability problem for the soliton of the focusing cubic Klein-Gordon equation on the line under even perturbations. The main obstruction to full asymptotic stability on the center-stable manifold is a small divisor in a quadratic source term of the perturbation equation. This singularity is due to the threshold resonance of the linearized operator and the absence of null structure in the nonlinearity. The threshold resonance of the linearized operator produces a one-dimensional space of slowly decaying Klein-Gordon waves, relative to local norms. In contrast, the closely related perturbation equation for the sine-Gordon kink does exhibit null structure, which makes the corresponding quadratic source term amenable to normal forms (see Lührmann and Schlag [Duke Math. J. 172 (2023), pp. 2715–2820]). The main result of this work establishes decay estimates up to exponential time scales for small “codimension one type” perturbations of the soliton of the focusing cubic Klein-Gordon equation. The proof is based upon a super-symmetric approach to the study of modified scattering for 1D nonlinear Klein-Gordon equations with Pöschl-Teller potentials from Lührmann and Schlag [Duke Math. J. 172 (2023), pp. 2715–2820], and an implementation of a version of an adapted functional framework introduced by Germain and Pusateri [Forum Math. Pi 10 (2022), p. 172]. 
    more » « less
  3. Abstract We consider the asymptotic behavior of small global-in-time solutions to a 1D Klein–Gordon equation with a spatially localized, variable coefficient quadratic nonlinearity and a non-generic linear potential. The purpose of this work is to continue the investigation of the occurrence of a novel modified scattering behavior of the solutions that involves a logarithmic slow-down of the decay rate along certain rays. This phenomenon is ultimately caused by the threshold resonance of the linear Klein–Gordon operator. It was previously uncovered for the special case of the zero potential in [51]. The Klein–Gordon model considered in this paper is motivated by the asymptotic stability problem for kink solutions arising in classical scalar field theories on the real line. 
    more » « less