skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1954751

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pincer‐type nickel–aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2PiPr2]. The Ni0–AlIIIcomplexes, {(MesPAlP)Ni}2(μ‐N2) and {(MesPAlP)Ni}2(μ‐COD), whereMesPAlP is (Mes)Al(NPhCH2PiPr2)2, were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two‐site Ni–Al unit, including oxidative addition of aryl halides, H2activation, and ortho‐directed C−H bond activation of pyridine N‐oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross‐coupling catalysis. The aryl‐transfer product,(THF)Al(NPhCH2PiPr2)2Ni(Mes), is the first example of a first‐row transition metal–aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ−–Alδ+electronic structure in the nickel–aluminyl complex. 
    more » « less
  2. Odd-electron bonds have unique electronic structures and are often encountered as transiently stable, homonuclear species. In this study, a pair of copper complexes supported by Group 13 metalloligands, M[N(( o -C 6 H 4 )NCH 2 P i Pr 2 ) 3 ] (M = Al or Ga), featuring two-center/one-electron (2c/1e) σ-bonds were synthesized by one-electron reduction of the corresponding Cu( i ) ⇢ M(III) counterparts. The copper bimetallic complexes were investigated by X-ray diffraction, cyclic voltammetry, electron paramagnetic spectroscopy, and density functional theory calculations. The combined experimental and theoretical data corroborate that the unpaired spin is delocalized across Cu, M, and ancillary atoms, and the singly occupied molecular orbital (SOMO) corresponds to a σ-(Cu–M) bond involving the Cu 4p z and M n s/ n p z atomic orbitals. Collectively, the data suggest the covalent nature of these interactions, which represent the first examples of odd-electron σ-bonds for the heavier Group 13 elements Al and Ga. 
    more » « less
  3. Completing a series of nickel-group 13 complexes, a coordinatively unsaturated nickel-boron complex and its derivatives with a H 2 , N 2 , or hydride ligand were synthesized and characterized. The toggling “on” of a Ni(0)–B( iii ) inverse-dative bond enabled the stabilization of a nickel-bound anionic hydride with a remarkably low thermodynamic hydricity of kcal mol −1 in THF. The flexible topology of the boron metalloligand confers both favorable hydrogen binding affinity and strong hydride donicity, albeit at the cost of high H 2 basicity during deprotonation to form the hydride. 
    more » « less