Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when the weights are independent copies of a symmetric random variable (satisfying a mild condition on tail probabilities), in particular when the weights are Gaussian.more » « less
-
We study the minimum spanning arborescence problem on the complete digraph [Formula: see text], where an edge e has a weight W e and a cost C e , each of which is an independent uniform random variable U s , where [Formula: see text] and U is uniform [Formula: see text]. There is also a constraint that the spanning arborescence T must satisfy [Formula: see text]. We establish, for a range of values for [Formula: see text], the asymptotic value of the optimum weight via the consideration of a dual problem.more » « less