skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955635

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diaryl difluoromethanes are valuable targets for medicinal chemistry because they are bioisosteres of diaryl ethers and can function as replacements for diaryl methane, ketone, and sulfone groups. However, methods to prepare diaryl difluoromethanes are scarce, especially methods starting from abundant aryl halides. We report the Pd‐catalyzed aryldifluoromethylation of aryl halides with aryldifluoromethyl trimethylsilanes (TMSCF2Ar). The reaction occurs when the catalyst contains a simple, but unusual, dialkylaryl phosphine ligand that promotes transmetallation of the silane. Computational studies show that reductive elimination following transmetallation occurs with a low barrier, despite the fluorine atoms on the α‐carbon, due to coordination of the difluorobenzyl π‐system to palladium. The co‐development of a cobalt‐catalyzed synthesis of the silanes broadened the scope of the process including several applications to the synthesis biologically relevant diaryl difluoromethanes. 
    more » « less
  2. Molecules bearing fluorine are increasingly prevalent in pharmaceuticals, agrochemicals, and functional materials. The cyanodifluoromethyl group is unique because its size is closer than that of any other substituted difluoromethyl group to the size of the trifluoromethyl group, but its electronic properties are distinct from those of the trifluoromethyl group. In addition, the presence of the cyano group provides synthetic entry to a wide range of substituted difluoromethyl groups. However, the synthesis of cyanodifluoromethyl compounds requires multiple steps, highly reactive reagents (such as DAST, NSFI, or IF5), or specialized starting materials (such as α,α-dichloroacetonitriles or α-mercaptoacetonitriles). Herein, we report a copper-mediated cyanodifluoromethylation of aryl and heteroaryl iodides and activated aryl and heteroaryl bromides with TMSCF2CN. This cyanodifluoromethylation tolerates an array of functional groups, is applicable to late-stage functionalization of complex molecules, yields analogues of FDA-approved pharmaceuticals and fine chemicals, and enables the synthesis of a range of complex molecules bearing a difluoromethylene unit by transformations of the electron-poor CN unit. Calculations of selected steps of the reaction mechanism by Density Functional Theory indicate that the barriers for both the oxidative addition of iodobenzene to [(DMF)CuCF2CN] and the reductive elimination of the fluoroalkyl product from the fluoroalkyl copper intermediate lie in between those of [(DMF)CuCF3] and [(DMF)CuCF2C(O)NMe2]. 
    more » « less
  3. Palladium-catalyzed fluoroalkylations of aryl halides are valuable reactions for the synthesis of fluorinated, biologically active molecules. Reductive elimination from an intermediate Pd(aryl)(fluoroalkyl) complex is the step that forms the C(aryl)–C(fluoroalkyl) bond, and this step typically requires higher temperatures and proceeds with slower rates than the reductive elimination of nonfluorinated alkylarenes from the analogous Pd(aryl)(alkyl) complexes. The experimental rates of this step correlate poorly with common parameters, such as the steric property or the electron-withdrawing ability of the fluoroalkyl ligand, making the prediction of rates and the rational design of Pd-catalyzed fluoroalkylations difficult. Therefore, a systematic study of the features of fluoroalkyl ligands that affect the barrier to this key step, including steric properties, electron-withdrawing properties, and secondary interactions, is necessary for the future development of fluoroalkylation reactions that occur under milder conditions and that tolerate additional types of fluoroalkyl reagents. We report computational studies of the effect of the fluoroalkyl (RF) ligand on the barriers to reductive elimination from Pd(aryl)(RF) complexes (RF = CF2CN, CF2C(O)Me, etc.) containing the bidentate ligand di-tert-butyl(2-methoxyphenyl)phosphine (L). The computed Gibbs free-energy barriers to reductive elimination from these complexes suggest that fluoroalkylarenes should form quickly at room temperature for the fluoroalkyl ligands we studied, excluding RF = CF3, CF2Me, C2F5, CF2CFMe2, CF2Et, CF2iPr, or CF2tBu. Analyses of the transition-state structures by natural bond orbital (NBO) and independent gradient model (IGMH) approaches reveal that orbital interactions between the Pd center and a hydrogen atom or π-acid bonded to the α-carbon atom of the RF ligand stabilize the lowest-energy transition states of Pd(aryl)(RF) complexes. Comparisons between conformers of transition-state structures suggest that the magnitude of such stabilizations is 4.7–9.9 kcal/mol. In the absence of these secondary orbital interactions, a more electron-withdrawing fluoroalkyl ligand leads to a higher barrier to reductive elimination than a less electron-withdrawing fluoroalkyl ligand. Computations on the reductive elimination from complexes containing para-substituted aryl groups on palladium reveal that the barriers to reductive elimination from complexes containing more electron-rich aryl ligands tend to be lower than those to reductive elimination from complexes containing less electron-rich aryl ligands when the fluoroalkyl ligands of these complexes can engage in secondary orbital interactions with the metal center. However, the computed barriers to reductive elimination do not depend on the electronic properties of the aryl ligand when the fluoroalkyl ligands do not engage in secondary orbital interactions with the metal center. 
    more » « less
  4. We report the palladium-catalyzed gem-difluoroallylation of aryl halides and pseudo halides with 3,3-difluoroallyl boronates in high yield with high regioselectivity, and we report the preparation of the 3,3-difluoroallyl boronate reactants by a copper-catalyzed defluorinative borylation of inexpensive gaseous 3,3,3-trifluoropropene with bis(pinacola-to) diboron. The gem-difluoroallylation of aryl and heteroaryl bromides proceeds with low catalyst loading (0.1 mol% [Pd]) and tolerates a wide range of functional groups, including primary alcohols, secondary amines, ethers, ketones, esters, amides, aldehydes, nitriles, halides, and nitro groups. This protocol extends to aryl iodides, chlorides, and triflates, as well as substituted difluoroallyl boronates, providing a versatile synthesis of gem-difluoroallyl arenes that we show to be valuable intermediates to a series of fluorinated building blocks 
    more » « less
  5. The Pd-catalyzed asymmetric α-arylation of carbonyl compounds is a valuable strategy to form benzylic stereocenters. However, the origin of the stereoselectivity of these reactions is poorly understood, and little is known about the reactivity of the putative diastereomeric arylpalladium enolate intermediates. To this end, we report the synthesis and characterization of a series of diphosphine-ligated arylpalladium fluoroenolate complexes, including complexes bearing a metal-bound, stereogenic carbon and an enantioenriched chiral diphosphine ligand. These complexes reductively eliminate to form chiral α-aryl-α-fluorooxindoles with enantioselectivities and rates that are relevant to those of the catalytic process with SEGPHOS as the ancillary ligand. Kinetic studies showed that the rate of reductive elimination is slightly slower than the rate of epimerization of the intermediate, causing the reductive elimination step to impart the greatest influence on the enantioselectivity. DFT calculations of these processes are consistent with these experimental rates and suggest that the minor diastereomer forms the major enantiomer of the product. The rates of reductive elimination from complexes containing a variety of electronically varied aryl ligands revealed the unusual trend that complexes bearing more electron-rich aryl ligands react faster than those bearing more electron-poor aryl ligands. Noncovalent Interaction (NCI) and Natural Bond Orbital (NBO) analyses of the transition-state structures for reductive elimination from the SEGPHOS-ligated complexes revealed key donor-acceptor interactions between the Pd center and the fluoroenolate fragment. These interactions stabilize the pathway to the major product enantiomer more strongly than they stabilize that to the minor enantiomer. 
    more » « less