Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent demand for distributed software had led to a surge in popularity in actor‐based frameworks. However, even with the stylized message passing model of actors, writing correct distributed software is still difficult. We present our work on linearizability checking in DS2, an integrated framework for specifying, synthesizing, and testing distributed actor systems. The key insight of our approach is that often subcomponents of distributed actor systems represent common algorithms or data structures (e.g., a distributed hash table or tree) that can be validated against a simple sequential model of the system. This makes it easy for developers to validate their concurrent actor systems without complex specifications. DS2 automatically explores the concurrent schedules that system could arrive at, and it compares observed output of the system to ensure it is equivalent to what the sequential implementation could have produced. We describe DS2's linearizability checking and test it on several concurrent replication algorithms from the literature. We explore in detail how different algorithms for enumerating the model schedule space fare in finding bugs in actor systems, and we present our own refinements on algorithms for exploring actor system schedules that we show are effective in finding bugs.more » « less
-
Free, publicly-accessible full text available November 17, 2025
-
Error-bounded lossy compression has been a critical technique to significantly reduce the sheer amounts of simulation datasets for high-performance computing (HPC) scientific applications while effectively controlling the data distortion based on user-specified error bound. In many real-world use cases, users must perform computational operations on the compressed data. However, none of the existing error-bounded lossy compressors support operations, inevitably resulting in undesired decompression costs. In this paper, we propose a novel error-bounded lossy compressor (called SZOps), which supports not only error-bounding features but efficient computations (including negation, scalar addition, scalar multiplication, mean, variance, etc.) on the compressed data without the complete decompression step, which is the first attempt to the best of our knowledge. We develop several optimization strategies to maximize the overall compression ratio and execution performance. We evaluate SZOps compared to other state-of-the-art lossy compressors based on multiple real-world scientific application datasets.more » « lessFree, publicly-accessible full text available November 17, 2025
-
Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems is quite limited and solutions require the application’s source code, which precludes their use in accelerated libraries where the source is not publicly available. We present an approach to find inputs that trigger floating-point exceptions in black-box CPU or GPU functions, i.e., functions where the source code and information about input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We implement our approach in the Xscope framework and demonstrate it on 58 functions from the CUDA Math Library and 81 functions from the Intel Math Library. Xscope is able to identify inputs that trigger exceptions in about 73% of the tested functions.more » « less
An official website of the United States government
