skip to main content


Title: Finding inputs that trigger floating-point exceptions in heterogeneous computing via Bayesian optimization
Testing code for floating-point exceptions is crucial as exceptions can quickly propagate and produce unreliable numerical answers. The state-of-the-art to test for floating-point exceptions in heterogeneous systems is quite limited and solutions require the application’s source code, which precludes their use in accelerated libraries where the source is not publicly available. We present an approach to find inputs that trigger floating-point exceptions in black-box CPU or GPU functions, i.e., functions where the source code and information about input bounds are unavailable. Our approach is the first to use Bayesian optimization (BO) to identify such inputs and uses novel strategies to overcome the challenges that arise in applying BO to this problem. We implement our approach in the Xscope framework and demonstrate it on 58 functions from the CUDA Math Library and 81 functions from the Intel Math Library. Xscope is able to identify inputs that trigger exceptions in about 73% of the tested functions.  more » « less
Award ID(s):
1956106
PAR ID:
10532118
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Parallel Computing
Volume:
117
Issue:
C
ISSN:
0167-8191
Page Range / eLocation ID:
103042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Given the importance of floating point (FP) performance in numerous domains, several new variants of FP and its alternatives have been proposed (e.g., Bfloat16, TensorFloat32, and posits). These representations do not have correctly rounded math libraries. Further, the use of existing FP libraries for these new representations can produce incorrect results. This paper proposes a novel approach for generating polynomial approximations that can be used to implement correctly rounded math libraries. Existing methods generate polynomials that approximate the real value of an elementary function 𝑓 (𝑥) and produce wrong results due to approximation errors and rounding errors in the implementation. In contrast, our approach generates polynomials that approximate the correctly rounded value of 𝑓 (𝑥) (i.e., the value of 𝑓 (𝑥) rounded to the target representation). It provides more margin to identify efficient polynomials that produce correctly rounded results for all inputs. We frame the problem of generating efficient polynomials that produce correctly rounded results as a linear programming problem. Using our approach, we have developed correctly rounded, yet faster, implementations of elementary functions for multiple target representations. 
    more » « less
  2. Posit is a recently proposed representation for approximating real numbers using a finite number of bits. In contrast to the floating point (FP) representation, posit provides variable precision with a fixed number of total bits (i.e., tapered accuracy). Posit can represent a set of numbers with higher precision than FP and has garnered significant interest in various domains. The posit ecosystem currently does not have a native general-purpose math library. This paper presents our results in developing a math library for posits using the CORDIC method. CORDIC is an iterative algorithm to approximate trigonometric functions by rotating a vector with different angles in each iteration. This paper proposes two extensions to the CORDIC algorithm to account for tapered accuracy with posits that improves precision: (1) fast-forwarding of iterations to start the CORDIC algorithm at a later iteration and (2) the use of a wide accumulator (i.e., the quire data type) to minimize precision loss with accumulation. Our results show that a 32-bit posit implementation of trigonometric functions with our extensions is more accurate than a 32-bit FP implementation. 
    more » « less
  3. null (Ed.)
    Logging is a vital part of the software development process. Developers use program logging to monitor program execution and identify errors and anomalies. These errors may also cause uncaught exceptions and generate stack traces that help identify the point of error. Both of these sources contain information that can be matched to points in the source code, but manual log analysis is challenging for large systems that create large volumes of logs and have large codebases. In this paper, we contribute a systematic mapping study to determine the state-of-the-art tools and methods used to perform automatic log analysis and stack trace analysis and match the extracted information back to the program's source code. We analyzed 16 publications that address this issue, summarizing their strategies and goals, and we identified open research directions from this body of work. 
    more » « less
  4. Mainstream math libraries for floating point (FP) do not produce correctly rounded results for all inputs. In contrast, CR-LIBM and RLIBM provide correctly rounded implementations for a specific FP representation with one rounding mode. Using such libraries for a representation with a new rounding mode or with different precision will result in wrong results due to double rounding. This paper proposes a novel method to generate a single polynomial approximation that produces correctly rounded results for all inputs for multiple rounding modes and multiple precision configurations. To generate a correctly rounded library for n -bits, our key idea is to generate a polynomial approximation for a representation with n +2-bits using the round-to-odd mode. We prove that the resulting polynomial approximation will produce correctly rounded results for all five rounding modes in the standard and for multiple representations with k -bits such that | E | +1 < k ≤ n , where | E | is the number of exponent bits in the representation. Similar to our prior work in the RLIBM project, we approximate the correctly rounded result when we generate the library with n +2-bits using the round-to-odd mode. We also generate polynomial approximations by structuring it as a linear programming problem but propose enhancements to polynomial generation to handle the round-to-odd mode. Our prototype is the first 32-bit float library that produces correctly rounded results with all rounding modes in the IEEE standard for all inputs with a single polynomial approximation. It also produces correctly rounded results for any FP configuration ranging from 10-bits to 32-bits while also being faster than mainstream libraries. 
    more » « less
  5. The development of sound and efficient tools that automatically perform floating-point round-off error analysis is an active area of research with applications to embedded systems and scientific computing. In this paper we describe VCFloat2, a novel extension to the VCFloat tool for verifying floating-point C programs in Coq. Like VCFloat1, VCFloat2 soundly and automatically computes round-off error bounds on floating-point expressions, but does so to higher accuracy; with better performance; with more generality for nonstandard number formats; with the ability to reason about external (user-defined or library) functions; and with improved modularity for interfacing with other program verification tools in Coq. We evaluate the performance of VCFloat2 using common benchmarks; compared to other state-of-the art tools, VCFloat2 computes competitive error bounds and transparent certificates that require less time for verification. 
    more » « less