skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1956313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Due to the growing complexity and numerous manufacturing variation in safety-critical analog and mixed-signal (AMS) circuit design, rare failure detection in the high-dimensional variational space is one of the major challenges in AMS verification. Efficient AMS failure detection is very demanding with limited samples on account of high simulation and manufacturing cost. In this work, we combine a reversible network and a gating architecture to identify essential features from datasets and reduce feature dimension for fast failure detection. While reversible residual networks (RevNets) have been actively studied for its restoration ability from output to input without the loss of information, the gating network facilitates the RevNet to aim at effective dimension reduction. We incorporate the proposed reversible gating architecture into Bayesian optimization (BO) framework to reduce the dimensionality of BO embedding important features clarified by gating fusion weights so that the failure points can be efficiently located. Furthermore, we propose a conditional density estimation of important and non-important features to extract high-dimensional original input features from the low-dimension important features, improving the efficiency of the proposed methods. The improvements of our proposed approach on rare failure detection is demonstrated in AMS data under the high-dimensional process variations. 
    more » « less
  2. Wafer map pattern recognition is instrumental for detecting systemic manufacturing process issues. However, high cost in labeling wafer patterns renders it impossible to leverage large amounts of valuable unlabeled data in conventional machine learning based wafer map pattern prediction. We proposed a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Our framework incorporates an encoder to learn good representation for wafer maps in an unsupervised manner, and a supervised head to recognize wafer map patterns. In particular, contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. We identified a set of transformations to effectively generate similar variants of each original pattern. We further proposed a novel rotation-twist transformation to augment wafer map data by rotating each given wafer map for which the angle of rotation is a smooth function of the radius. Experimental results demonstrate that the proposed semi-supervised learning framework greatly improves recognition accuracy compared to traditional supervised methods, and the rotation-twist transformation further enhances the recognition accuracy in both semi-supervised and supervised tasks. 
    more » « less
  3. null (Ed.)
    Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multi-class classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach. 
    more » « less