skip to main content


Search for: All records

Award ID contains: 2000759

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Normative learning theories dictate that we should preferentially attend to informative sources, but only up to the point that our limited learning systems can process their content. Humans, including infants, show this predicted strategic deployment of attention. Here we demonstrate that rhesus monkeys, much like humans, attend to events of moderate surprisingness over both more and less surprising events. They do this in the absence of any specific goal or contingent reward, indicating that the behavioral pattern is spontaneous. We suggest this U-shaped attentional preference represents an evolutionarily preserved strategy for guiding intelligent organisms toward material that is maximally useful for learning. 
    more » « less
  2. null (Ed.)
    People can identify the number of objects in small sets rapidly and without error but become increasingly noisy for larger sets. However, the cognitive mechanisms underlying these ubiquitous psychophysics are poorly understood. We present a model of a limitedcapacity visual system optimized to individuate and remember the location of objects in a scene which gives rise to all key aspects of number psychophysics, including error-free small number perception and scalar variability for larger numbers. We therefore propose that number psychophysics can be understood as an emergent property of primitive perceptual mechanisms — namely, the process of identifying and representing individual objects in a scene. To test our theory, we ran two experiments: a change-localization task to measure participants’ memory for the locations of objects (Experiment 1) and a numerical estimation task (Experiment 2). Our model accounts well for participants’ performance in both experiments, despite only being optimized to efficiently encode where objects are present in a scene. Our results demonstrate that the key psychophysical features of numerical cognition do not arise from separate modules or capacities specific to number, but rather from lower-level constraints on perception which are manifested even in non-numerical tasks 
    more » « less
  3. null (Ed.)
  4. null (Ed.)