skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Children’s Estimation of Peripheral Information Drives Improvements in Approximate Number Sense
Children rely on their approximate number system (ANS) to guess quantities from a young age. Studies have shown that older children displayed better ANS performance. However, previous research did not provide an explanation for this ANS improvement. We show that children’s development in ANS is primarily driven by improved attentional control and awareness of peripheral information. Children guess the number of dots on a computer screen while being eye-tracked in our experiment. The behavioral and eye-tracking results provide supporting evidence for our account. Our analysis shows that children estimate better under the longer display-time condition and more visual foveation, with the effect of visual foveation mediating that of time. It also shows that older children make fewer underestimations because they are better at directing their attention and gaze toward areas of interest, and they are also more aware of dots in their peripheral vision. Our finding suggests that the development of children’s ANS is significantly impacted by the development of children’s nonnumerical cognitive abilities.  more » « less
Award ID(s):
2000759
PAR ID:
10517222
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the Cognitive Science Society
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The approximate number system (ANS) has attracted broad interest due to its potential importance in early mathematical development and the fact that it is conserved across species. Models of the ANS and behavioral measures of ANS acuity both assume that quantity estimation is computed rapidly and in parallel across an entire view of the visual scene. We present evidence instead that ANS estimates are largely the product of a serial accumulation mechanism operating across visual fixations. We used an eye-tracker to collect data on participants’ visual fixations while they performed quantity-estimation and -discrimination tasks. We were able to predict participants’ numerical estimates using their visual fixation data: As the number of dots fixated increased, mean estimates also increased, and estimation error decreased. A detailed model-based analysis shows that fixated dots contribute twice as much as peripheral dots to estimated quantities; people do not “double count” multiply fixated dots; and they do not adjust for the proportion of area in the scene that they have fixated. The accumulation mechanism we propose explains reported effects of display time on estimation and earlier findings of a bias to underestimate quantities. 
    more » « less
  2. How do children’s visual concepts change across childhood, and how might these changes be reflected in their drawings? Here we investigate developmental changes in children’s ability to emphasize the relevant visual distinctions between object categories in their drawings. We collected over 13K drawings from children aged 2-10 years via a free-standing drawing station in a children’s museum. We hypothesized that older children would produce more recognizable drawings, and that this gain in recognizability would not be entirely explained by concurrent development in visuomotor control. To measure recognizability, we applied a pretrained deep convolutional neural network model to extract a high-level feature representation of all drawings, and then trained a multi-way linear classifier on these features. To measure visuomotor control, we developed an automated procedure to measure their ability to accurately trace complex shapes. We found consistent gains in the recognizability of drawings across ages that were not fully explained by children’s ability to accurately trace complex shapes. Furthermore, these gains were accompanied by an increase in how distinct different object categories were in feature space. Overall, these results demonstrate that children’s drawings include more distinctive visual features as they grow older. 
    more » « less
  3. How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts. 
    more » « less
  4. Children bring intuitive arithmetic knowledge to the classroom before formal instruction in mathematics begins. For example, children can use their number sense to add, subtract, compare ratios, and even perform scaling operations that increase or decrease a set of dots by a factor of 2 or 4. However, it is currently unknown whether children can engage in a true division operation before formal mathematical instruction. Here we examined the ability of 6- to 9-year-old children and college students to perform symbolic and non-symbolic approximate division. Subjects were presented with non-symbolic (dot array) or symbolic (Arabic numeral) dividends ranging from 32 to 185, and non-symbolic divisors ranging from 2 to 8. Subjects compared their imagined quotient to a visible target quantity. Both children (Experiment 1 N = 89, Experiment 2 N = 42) and adults (Experiment 3 N = 87) were successful at the approximate division tasks in both dots and numeral formats. This was true even among the subset of children that could not recognize the division symbol or solve simple division equations, suggesting intuitive division ability precedes formal division instruction. For both children and adults, the ability to divide non-symbolically mediated the relation between Approximate Number System (ANS) acuity and symbolic math performance, suggesting that the ability to calculate non-symbolically may be a mechanism of the relation between ANS acuity and symbolic math. Our findings highlight the intuitive arithmetic abilities children possess before formal math instruction. 
    more » « less
  5. Inclusive classrooms aim to promote the social participation of children with learning difficulties (LD). Research shows that children without LD view it as fair to include their peers with LD into the classroom community. Still, children with LD often face social exclusion. This study addressed this gap by investigating how children reason about challenging LD-based exclusion. One objective was to document the distinction between children’s personal goals and their expectations of their peers’ goals when confronting exclusionary behavior toward a peer with LD. Swiss elementary school children (N= 349, 7–13 years, 48% female) were introduced to a scenario about a classmate with LD who was excluded from a group task. They reasoned whether and why they would intervene and what reactions they expected from the group and the perpetrator. The results showed that the vast majority of childrenpersonallyintended to intervene, primarily for moral reasons. However, children’s expectations about their peers were different. They expected a wide range of responses, including negative group dynamics and LD-stereotypes. Higher perceptions of inclusive classroom norms were related to fewer expectations of negative group dynamics. Moreover, older children’s reasoning was more differentiated and included multiple concerns simultaneously. These findings inform strategies for creating inclusive classrooms. 
    more » « less