skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2001036

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 2D-layered materials (e.g., graphene and transition metal dichalcogenides) have attracted huge attention due to their unique mechanical and electrical properties. Emerging research efforts, which seek to combine device characterization and high-resolution electron micrography analysis for 2D-layered device features, demand nano/microlithographic techniques capable of producing ordered 2D material patterns on ultrathin membranes with nanoscale thicknesses. However, such membranes are so fragile that most conventional lithographic techniques can be hardly performed on them to generate 2D material patterns. Our previous works have demonstrated that the rubbing-induced site-selective (RISS) deposition method can produce arbitrary 2D semiconductor (e.g., MoS2 and Bi2Se3) patterns on regular device substrates. This fabrication route prevents the vulnerable 2D-layered structures from the detrimental damage introduced by plasma etching and resist-based lithography processes. In this work, we explore the applicability of RISS for directly producing 2D material patterns on nanomembranes. Specifically, this work shows that a polymeric interfacing layer on the rubbing template features, which can effectively prevent stress concentration during the rubbing process, is crucial to successful implementation of RISS processes on nanomembranes. Furthermore, we carried out the mechanics simulation of the Von Mises stress and pressure distribution on the RISS-processed membrane to identify the optimal rubbing load, which can generate sufficient triboelectric charge for material deposition but no damage to the membrane. Using this approach, we have successfully demonstrated the deposition of Bi2Se3 patterns on 25 nm SiOx nanomembranes and high-resolution transmission electron micrography characterization of the crystallographic structures. 
    more » « less
  2. Memristors based on 2D semiconductors such as MoS2 and its derivative materials exhibit analog switching behaviors capable of emulating some synaptic functions, including short-term plasticity, long-term potentiation, and spike-time-dependent-plasticity. Additional investigation is needed to realize reliable control of such synaptic behaviors for practical device implementation. To meet this scientific need, we fabricated MoS2-based memristors and studied their paired-pulse facilitation (PPF) and long-term memory characteristics under different pulse programming settings. This research has provided a guideline for identifying the programming settings for different neuromorphic processes. For example, a specific setting resulting in PPF > 30% and long-term conductance change < 20% has been identified to be suited for processing real-time temporal information. Furthermore, this research also indicates that the MoS2 memristor keeps having an almost constant relative change in conductance but greatly enhanced drive current level under laser illumination. This behavior can enable an easy integration of such memristive devices with state-of-the-art controller circuits for practice neuromorphic control applications. 
    more » « less
  3. Emerging wearable devices are very attractive and promising in biomedical and healthcare fields because of their biocompatibility for monitoring in situ biomarker-associated signals and external stimulus. Many such devices or systems demand microscale sensors fabricated on curved and flexible hydrogel substrates. However, fabrication of microstructures on such substrates is still challenging because the traditional planar lithography process is not compatible with curved, flexible, and hydrated substrates. Here, we present a shadow-mask-assisted deposition process capable of directly generating metallic microstructures on the curved hydrogel substrate, specifically the contact lens, one of the most popular hydrogel substrates for wearable biomedical applications. In this process, the curved hydrogel substrate is temporarily flattened on a planar surface and metal features are deposited on this substrate through a shadow mask. To achieve a high patterning fidelity, we have experimentally and theoretically investigated various types of distortion due to wrinkles on 3D-printed sample holders, geometric distortion of the substrate due to the flattening process, and volume change of the hydrogel material during the dehydration and hydration processes of the contact lens. Using this method, we have demonstrated fabrication of various titanium pattern arrays on contact lenses with high fidelity and yield. 
    more » « less