skip to main content


Search for: All records

Award ID contains: 2001605

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract We consider a product $X=E_1\times \cdots \times E_d$ of elliptic curves over a finite extension $K$ of ${\mathbb{Q}}_p$ with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of $X$ is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map $CH_0(X)/p^n\rightarrow H^{2d}_{\acute{\textrm{e}}\textrm{t}}(X, \mu _{p^n}^{\otimes d})$. We give specific criteria that guarantee this map is injective for every $n\geq 1$. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension $L$ of $K$ for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi. 
    more » « less