skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zero Cycles on a Product of Elliptic Curves Over a p -adic Field
Abstract We consider a product $$X=E_1\times \cdots \times E_d$$ of elliptic curves over a finite extension $$K$$ of $${\mathbb{Q}}_p$$ with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of $$X$$ is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map $$CH_0(X)/p^n\rightarrow H^{2d}_{\acute{\textrm{e}}\textrm{t}}(X, \mu _{p^n}^{\otimes d})$$. We give specific criteria that guarantee this map is injective for every $$n\geq 1$$. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension $$L$$ of $$K$$ for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi.  more » « less
Award ID(s):
2001605
PAR ID:
10401404
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2022
Issue:
14
ISSN:
1073-7928
Page Range / eLocation ID:
10586 to 10625
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over$$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where$$J_i$$ J i is the Jacobian variety of$$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map$$\varepsilon $$ ε has finite image. 
    more » « less
  2. Abstract For any compact connected one-dimensional submanifold $$K\subset \mathbb R^{2\times 2}$$ without boundary that has no rank-one connection and is elliptic, we prove the quantitative rigidity estimate $$\begin{align*} \inf_{M\in K}\int_{B_{1/2}}| Du -M |^2\, \textrm{d}x \leq C \int_{B_1} \operatorname{dist}^2(Du, K)\, \textrm{d}x, \qquad\forall u\in H^1(B_1;\mathbb R^2). \end{align*}$$This is an optimal generalization, for compact connected submanifolds of $$\mathbb R^{2\times 2}$$ without boundary, of the celebrated quantitative rigidity estimate of Friesecke, James, and Müller for the approximate differential inclusion into $SO(n)$. The proof relies on the special properties of elliptic subsets $$K\subset{{\mathbb{R}}}^{2\times 2}$$ with respect to conformal–anticonformal decomposition, which provide a quasilinear elliptic partial differential equation satisfied by solutions of the exact differential inclusion $$Du\in K$$. We also give an example showing that no analogous result can hold true in $$\mathbb R^{n\times n}$$ for $$n\geq 3$$. 
    more » « less
  3. Abstract We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary quadratic order $${\mathcal {O}}$$ O in an unknown ideal class $$[{\mathfrak {a}}] \in {{\,\textrm{cl}\,}}({\mathcal {O}})$$ [ a ] ∈ cl ( O ) that connects two given $${\mathcal {O}}$$ O -oriented elliptic curves $$(E, \iota )$$ ( E , ι ) and $$(E', \iota ') = [{\mathfrak {a}}](E, \iota )$$ ( E ′ , ι ′ ) = [ a ] ( E , ι ) . When specialized to ordinary elliptic curves over finite fields, our method is conceptually simpler and often somewhat faster than a recent approach due to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead. The main implication of our work is that it breaks the decisional Diffie–Hellman problem for practically all oriented elliptic curves that are acted upon by an even-order class group. It can also be used to better handle the worst cases in Wesolowski’s recent reduction from the vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading to a method that always works in sub-exponential time. 
    more » « less
  4. Problems relating to the computation of isogenies between elliptic curves defined over finite fields have been studied for a long time. Isogenies on supersingular elliptic curves are a candidate for quantum-safe key exchange protocols because the best known classical and quantum algorithms for solving well-formed instances of the isogeny problem are exponential. We propose an implementation of supersingular isogeny Diffie-Hellman (SIDH) key exchange for complete Edwards curves. Our work is motivated by the use of Edwards curves to speed up many cryptographic protocols and improve security. Our work does not actually provide a faster implementation of SIDH, but the use of complete Edwards curves and their complete addition formulae provides security benefits against side-channel attacks. We provide run time complexity analysis and operation counts for the proposed key exchange based on Edwards curves along with comparisons to the Montgomery form. 
    more » « less
  5. Abstract Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $$X_{\overline {K}}$$ has infinitely many rational curves or X has infinitely many unirational specialisations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K . 
    more » « less