- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Brandt, Madeline (4)
-
Ulirsch, Martin (2)
-
Eur, Christopher (1)
-
Madeline Brandt and Alheydis Geiger (1)
-
Speyer, David E. (1)
-
Zhang, Leon (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We study Dressians of matroids using the initial matroids of Dress and Wenzel. These correspond to cells in regular matroid subdivisions of matroid polytopes. An efficient algorithm for computing Dressians is presented, and its implementation is applied to a range of interesting matroids. We give counterexamples to a few plausible statements about matroid subdivisions.more » « less
-
Brandt, Madeline; Ulirsch, Martin (, Transactions of the American Mathematical Society, Series B)We show that the non-Archimedean skeleton of the d d -th symmetric power of a smooth projective algebraic curve X X is naturally isomorphic to the d d -th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of X X . The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems.more » « less
-
Brandt, Madeline; Ulirsch, Martin (, Michigan Mathematical Journal)
-
Brandt, Madeline; Eur, Christopher; Zhang, Leon (, Advances in Mathematics)
-
Madeline Brandt and Alheydis Geiger (, Le Matematiche)
An official website of the United States government

Full Text Available