skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2002055

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Given a hermitian line bundle on a closed Riemannian manifold , the self‐dual Yang–Mills–Higgs energies are a natural family of functionalsdefined for couples consisting of a section  and a hermitian connection ∇ with curvature . While the critical points of these functionals have been well‐studied in dimension two by the gauge theory community, it was shown in [52] that critical points in higher dimension converge as (in an appropriate sense) to minimal submanifolds of codimension two, with strong parallels to the correspondence between the Allen–Cahn equations and minimal hypersurfaces. In this paper, we complement this idea by showing the Γ‐convergence of to (2π times) the codimension two area: more precisely, given a family of couples with , we prove that a suitable gauge invariant Jacobian converges to an integral ‐cycle Γ, in the homology class dual to the Euler class , with mass . We also obtain a recovery sequence, for any integral cycle in this homology class. Finally, we apply these techniques to compare min‐max values for the ‐area from the Almgren–Pitts theory with those obtained from the Yang–Mills–Higgs framework, showing that the former values always provide a lower bound for the latter. As an ingredient, we also establish a Huisken‐type monotonicity result along the gradient flow of . 
    more » « less