Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Identifying the causes for historical sea-level changes in coastal tide-gauge records is important for constraining oceanographic, geologic, and climatic processes. The Río de la Plata estuary in South America features the longest tide-gauge records in the South Atlantic. Despite the relevance of these data for large-scale circulation and climate studies, the mechanisms underlying relative sea-level changes in this region during the past century have not been firmly established. I study annual data from tide gauges in the Río de la Plata and stream gauges along the Río Paraná and Río Uruguay to establish relationships between river streamflow and sea level over 1931–2014. Regression analysis suggests that streamflow explains 59 %±17 % of the total sea-level variance at Buenos Aires, Argentina, and 28 %±21 % at Montevideo, Uruguay (95 % confidence intervals). A long-term streamflow increase effected sea-level trends of 0.71±0.35 mm yr−1 at Buenos Aires and 0.48±0.38 mm yr−1 at Montevideo. More generally, sea level at Buenos Aires and Montevideo respectively rises by (7.3±1.8)×10-6 m and (4.7±2.6)×10-6 m per 1 m3 s−1 streamflow increase. These observational results are consistent with simple theories for the coastal sea-level response to streamflow forcing, suggesting a causal relationship between streamflow and sea level mediated by ocean dynamics. Findings advance understanding of local, regional, and global sea-level changes; clarify sea-level physics; inform future projections of coastal sea level and the interpretation of satellite data and proxy reconstructions; and highlight future research directions. Specifically, local and regional river effects should be accounted for in basin-scale and global mean sea-level budgets as well as reconstructions based on sparse tide-gauge records.more » « less
-
Super, J. (Ed.)Reconstructions of Common Era sea level are informative of relationships between sea level and natural climate variability, and the uniqueness of modern sea-level rise1. Kench et al.2 recently reconstructed Common Era sea level in the Maldives, Indian Ocean, using corals, and reported periods of 150–500 years when sea level fell and rose at average rates of 2.7–4.3 mm yr−1, which they attributed to ocean cooling and warming inferred from reconstructions of sea-surface temperature (SST) and radiative forcing (Fig. 2 of ref. 2). We challenge their interpretation, using principles of sea-level physics to argue that pre-industrial radiative forcing and SST changes were insufficient to cause thermosteric sea-level (TSL) trends as large as reported for the Maldives2. Our results support the paradigm that modern rates and magnitudes of sea-level rise due to climate change are unprecedented during the Common Era3,4.more » « less
An official website of the United States government
