skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2002692

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Evidence of fluctuations in transport have long been predicted in3He. They are expected to contribute only within 100μK ofTcand play a vital role in the theoretical modeling of ordering; they encode details about the Fermi liquid parameters, pairing symmetry, and scattering phase shifts. It is expected that they will be of crucial importance for transport probes of the topologically nontrivial features of superfluid3He under strong confinement. Here we characterize the temperature and pressure dependence of the fluctuation signature, by monitoring the quality factor of a quartz tuning fork oscillator. We have observed a fluctuation-driven reduction in the viscosity of bulk3He, finding data collapse consistent with the predicted theoretical behavior. 
    more » « less
  2. Abstract The symmetry-breaking first-order phase transition between superfluid phases$$^3$$ 3 He-A and$$^3$$ 3 He-B can be triggered extrinsically by ionising radiation or heterogeneous nucleation arising from the details of the sample cell construction. However, the role of potential homogeneous intrinsic nucleation mechanisms remains elusive. Discovering and resolving the intrinsic processes may have cosmological consequences, since an analogous first-order phase transition, and the production of gravitational waves, has been predicted for the very early stages of the expanding Universe in many extensions of the Standard Model of particle physics. Here we introduce a new approach for probing the phase transition in superfluid$$^3$$ 3 He. The setup consists of a novel stepped-height nanofluidic sample container with close to atomically smooth walls. The$$^3$$ 3 He is confined in five tiny nanofabricated volumes and assayed non-invasively by NMR. Tuning of the state of$$^3$$ 3 He by confinement is used to isolate each of these five volumes so that the phase transitions in them can occur independently and free from any obvious sources of heterogeneous nucleation. The small volumes also ensure that the transitions triggered by ionising radiation are strongly suppressed. Here we present the preliminary measurements using this setup, showing both strong supercooling of$$^3$$ 3 He-A and superheating of$$^3$$ 3 He-B, with stochastic processes dominating the phase transitions between the two. The objective is to study the nucleation as a function of temperature and pressure over the full phase diagram, to both better test the proposed extrinsic mechanisms and seek potential parallel intrinsic mechanisms. 
    more » « less
  3. Abstract Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid 3 He A–B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pressures below 29.3 bar at nearly zero magnetic field. The A phase can be cooled significantly below the thermodynamic A–B transition temperature. While the extent of supercooling is highly reproducible, it depends strongly upon the cooling trajectory: The metastability of the A phase is enhanced by transiting through regions where the A phase is more stable. We provide evidence that some of the additional supercooling is due to the elimination of B phase nucleation precursors formed upon passage through the superfluid transition. A greater understanding of the physics is essential before 3 He can be exploited to model transitions in the early universe. 
    more » « less
  4. We provide the conversion parameters to allow a $^3$$He melting curve thermometer to be used to calibrate secondary thermometers to the PLTS2000 temperature scale \cite{rusby2007realization}. Additional fits to the phase diagram of superfluid $$^3$He are also provided using the melting curve $P,T$ measurements and of the phase diagram of superfluid $^3$He as a bridge. Further the melting curve measurements of Osheroff and Yu are also used to extend the scale below 0.9 mK. 
    more » « less
  5. null (Ed.)
    Abstract Superfluid 3 He, with unconventional spin-triplet p-wave pairing, provides a model system for topological superconductors, which have attracted significant interest through potential applications in topologically protected quantum computing. In topological insulators and quantum Hall systems, the surface/edge states, arising from bulk-surface correspondence and the momentum space topology of the band structure, are robust. Here we demonstrate that in topological superfluids and superconductors the surface Andreev bound states, which depend on the momentum space topology of the emergent order parameter, are fragile with respect to the details of surface scattering. We confine superfluid 3 He within a cavity of height D comparable to the Cooper pair diameter ξ 0 . We precisely determine the superfluid transition temperature T c and the suppression of the superfluid energy gap, for different scattering conditions tuned in situ, and compare to the predictions of quasiclassical theory. We discover that surface magnetic scattering leads to unexpectedly large suppression of T c , corresponding to an increased density of low energy bound states. 
    more » « less
  6. null (Ed.)