Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Human‐caused climate change is predicted to bring more frequent droughts and higher temperatures in the western United States, which threaten ecologically important trembling aspen forests.We used ring‐specific vulnerability curves of aspen branches along two climate gradients to determine whether damages to pit membranes accumulate as the xylem ages.We found that rings older than 3 yr have a significant decline in hydraulic conductivity, especially at average summer water potentials for the species. These differences were not due to differences in the diameter of the vessels, but a difference in how much xylem was active between rings older than 3 yr and 1 yr, suggesting the presence of accumulated damage to pit membranes impairing water transport.Vulnerability to embolism differs across ring age and between wetter and drier populations, underscoring that damages due to drought may accumulate to lethal levels if the xylem does not acclimate to climate change in newer growth.more » « less
-
ABSTRACT Nature‐based climate solutions in Earth's forests could strengthen the land carbon sink and contribute to climate mitigation, but must adequately account for climate risks to the durability of carbon storage. Forest carbon offset protocols use a “buffer pool” to insure against disturbance risks that may compromise durability. However, the extent to which current buffer pool tools and allocations align with current scientific data or models is not well understood. Here, we use a tropical forest stand biomass model and an extensive set of long‐term tropical forest plots to test whether current buffer pool contributions are adequate to insure against observed disturbance regimes. We find that forest age and disturbance regime both influence necessary buffer pool sizes. In the majority of disturbance scenarios in a major carbon registry buffer pool tool, current buffer pools are substantially smaller than required by carbon cycle science. Buffer pool tools and estimates urgently need to be updated to accurately assess disturbance regimes and climate change impact on disturbances based on rigorous, open scientific datasets for nature‐based climate solutions to succeed.more » « less
-
Abstract Structural overshoots, where biomass is overallocated to tree leaf area compared to sapwood area, could result in lethal stress during droughts. Climate change may alter climatic cues that drive leaf area production, such as temperature and precipitation, as well as seasonal dynamics that underlie summer rainfall due to the North American Monsoon (NAM). Combined, this could lead to temporal mismatches between leaf area‐driven water demand and availability, and increased drought‐induced mortality events.We used leaf area to sapwood area ratios to investigate the prevalence of overshoots and whether overshoots increase drought‐induced mortality. We measured populations of aspen spanning the northern transition zone of the NAM during and following severe droughts.We observed increased overshoots and drought‐induced mortality in southern latitude populations that rely more on summer monsoon rainfall. Changes in convective activity from low snowpack the preceding winter may be a climatic driver of heightened summer monsoon rainfall in the region and therefore may also trigger increased production of leaf area during wetter summers.Our results suggest that an overshoot of leaf area to sapwood area (AL:AS) ratios is associated with drought‐induced tree mortality and highlight that climate‐change driven alterations to the NAM could have major consequences for tree species' acclimation to environmental change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Metrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a variable whose importance for plant physiology is expected to grow because of higher temperatures in the coming decades. We present a metric, the stringency of water potential regulation, that can be employed at the daily scale and quantifies the effects exerted on plants by the separate and combined effect of soil and atmospheric drought. We test our theory using datasets from two experiments where air temperature and VPD were experimentally manipulated. In contrast to existing metrics based on soil drought that can only be applied at the seasonal scale, our metric successfully detects the impact of atmospheric warming on the regulation of plant water status. We show that the thermodynamic effect of VPD on plant water status can be isolated and compared against that exerted by soil drought and the covariation between VPD and soil drought. Furthermore, in three of three cases, VPD accounted for more than 5 MPa of potential effect on leaf water potential. We explore the significance of our findings in the context of potential future applications of this metric from plant to ecosystem scale.more » « less
-
Abstract Cyclonic storms, or hurricanes, are expected to intensify as ocean heat energy rises due to climate change. Ecological theory suggests that tropical forest resistance to hurricanes should increase with forest age and wood density. However, most data on hurricane effects on tropical forests come from a limited number of well‐studied long‐term monitoring sites, restricting our capacity to evaluate the resistance of tropical forests to hurricanes across broad environmental gradients.In this study, we assessed whether forest age and aridity mediate the effects of hurricanes Irma and Maria in Puerto Rico, Vieques and Culebra islands. We leveraged functional trait data for 410 tree species, remotely sensed measurements of canopy height and cover, along with data on forest stand characteristics of 180 of 338 forest monitoring plots, each covering an area of 0.067 ha. The plots represent a broad mean annual precipitation (MAP) gradient from 701 to 4598 mm and a complex mosaic of forest age from 5 to around 85 years since deforestation.Hurricanes resulted in a 25% increase in basal area mortality rates, a 45% decrease in canopy height and a 21% reduction in canopy cover. These effects intensified with forest age, even after considering proximity to the hurricane path. The links between forest age and hurricane disturbances were likely due the prevalence of tall canopies.Tall forest canopies were strongly linked with low community‐weighted wood density (WD). These characteristics were on average more common in moist and wet forests (MAP >1250 mm). Conversely, dry forests were dominated by short species with high wood density (WD > 0.6 g cm−3) and did not show significant increases in basal area mortality rates after the hurricanes.Synthesis. Our findings show that selection towards drought‐tolerant traits across aridity gradients, such as short stature and dense wood, enhances resistance to hurricanes. However, forest age modulated responses to hurricanes, with older forests being less resistant across the islands. This evidence highlights the importance of considering the intricate links between ecological succession and plant function when forecasting tropical forests’ responses to increasingly strong hurricanes.more » « less
-
Abstract The extent to which future climate change will increase forest stress and the amount to which species and forest ecosystems can acclimate or adapt to increased stress is a major unknown. We used high‐resolution maps of hydraulic traits representing the diversity in tree drought tolerance across the United States, a hydraulically enabled tree model, and forest inventory observations of demographic shifts to quantify the ability for within‐species acclimation and between‐species range shifts to mediate climate stress. We found that forests are likely to experience increases in both acute and chronic hydraulic stress with climate change. Based on current species distributions, regional hydraulic trait diversity was sufficient to buffer against increased stress in 88% of forested areas. However, observed trait velocities in 81% of forested areas are not keeping up with the rate required to ameliorate projected future stress without leaf area acclimation.more » « less
-
Summary Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought.Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait‐mediated trade‐offs in growth and drought stress tolerance.We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth–drought stress tolerance trade‐offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress.Our results highlight the limits of trait‐mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments.more » « less
-
Abstract Forest productivity projections remain highly uncertain, notably because underpinning physiological controls are delicate to disentangle. Transient perturbation of global climate by large volcanic eruptions provides a unique opportunity to retrospectively isolate underlying processes. Here, we use a multi‐proxy dataset of tree‐ring records distributed over the Northern Hemisphere to investigate the effect of eruptions on tree growth and photosynthesis and evaluate CMIP6 models. Tree‐ring isotope records denoted a widespread 2–4 years increase of photosynthesis following eruptions, likely as a result of diffuse light fertilization. We found evidence that enhanced photosynthesis transiently drove ring width, but the latter further exhibited a decadal anomaly that evidenced independent growth and photosynthesis responses. CMIP6 simulations reproduced overall tree growth decline but did not capture observed photosynthesis anomaly, its decoupling from tree growth or the climate sensitivities of either processes, highlighting key disconnects that deserve further attention to improve forest productivity projections under climate change.more » « less
-
Abstract Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate‐driven disturbances pose critical risks to the long‐term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress‐driven tree mortality, including a separate insect‐driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate‐stress mortality. These forest disturbance risks highlight pervasive climate‐sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US‐wide risk maps of key climate‐sensitive disturbances for improving carbon cycle modeling, conservation and climate policy.more » « less
-
Abstract Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government
