Summary Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought.Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden. We also tested for trait‐mediated trade‐offs in growth and drought stress tolerance.We observed intraspecific trait variation among the populations, yet this variation did not necessarily translate to higher drought stress tolerance in hotter/drier populations. Additionally, plasticity in the common garden was low, especially in propagules derived from the hottest/driest population. We found no growth–drought stress tolerance trade‐offs and few traits exhibited significant relationships with mortality in the natural populations, suggesting that intraspecific trait variation among the traits measured did not strongly mediate responses to drought stress.Our results highlight the limits of trait‐mediated responses to drought stress and the complex G×E interactions that may underlie drought stress tolerance variation in forests in dry environments.
more »
« less
Quantifying within‐species trait variation in space and time reveals limits to trait‐mediated drought response
Abstract Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
- PAR ID:
- 10370818
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 36
- Issue:
- 9
- ISSN:
- 0269-8463
- Format(s):
- Medium: X Size: p. 2399-2411
- Size(s):
- p. 2399-2411
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations.We measured within‐species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co‐occurringAcaciaspecies to explore how traits and their variances change with aridity.Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation.Our results highlight that climate can drive consistent within‐species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients.more » « less
-
Summary As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts.We analyzed tree‐ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species’ traits shaped drought responses across the three strongest regional droughts over a 60‐yr period.Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation.The tree‐ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change‐induced droughts intensify, tall trees with drought‐sensitive leaves will be most vulnerable to immediate and longer‐term growth reductions.more » « less
-
Abstract Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.more » « less
-
Summary Models of tree–grass coexistence in savannas make different assumptions about the relative performance of trees and grasses under wet vs dry conditions. We quantified transpiration and drought tolerance traits in 26 tree and 19 grass species from the African savanna biome across a gradient of soil water potentials to test for a trade‐off between water use under wet conditions and drought tolerance.We measured whole‐plant hourly transpiration in a growth chamber and quantified drought tolerance using leaf osmotic potential (Ψosm). We also quantified whole‐plant water‐use efficiency (WUE) and relative growth rate (RGR) under well‐watered conditions.Grasses transpired twice as much as trees on a leaf‐mass basis across all soil water potentials. Grasses also had a lower Ψosmthan trees, indicating higher drought tolerance in the former. Higher grass transpiration and WUE combined to largely explain the threefold RGR advantage in grasses.Our results suggest that grasses outperform trees under a wide range of conditions, and that there is no evidence for a trade‐off in water‐use patterns in wet vs dry soils. This work will help inform mechanistic models of water use in savanna ecosystems, providing much‐needed whole‐plant parameter estimates for African species.more » « less