Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1–4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics.more » « less
-
Can active forces be exploited to drive the consistent collapse of an active polymer into a folded structure? In this paper, we introduce and perform numerical simulations of a simple model of active colloidal folders and show that a judicious inclusion of active forces into a stiff colloidal chain can generate designable and reconfigurable two-dimensional folded structures. The key feature is to organize the forces perpendicular to the chain backbone according to specific patterns (sequences). We characterize the physical properties of this model and perform, using a number of numerical techniques, an in-depth statistical analysis of structure and dynamics of the emerging conformations. We discovered a number of interesting features, including the existence of a direct correspondence between the sequence of the active forces and the structure of folded conformations, and we discover the existence of an ensemble of highly mobile compact structures capable of moving from conformation to conformation. Finally, akin to protein design problems, we discuss a method that is capable of designing specific target folds by sampling over sequences of active forces.more » « less
An official website of the United States government
