Abstract The conformation of macromolecules attached to a surface is influenced by both their excluded volume and steric forces. Here, self‐avoiding random walk simulations are used to evaluate the occurrence of various conformations as a function of the number of monomeric units to estimate the effect of conformational entropy of a tethered chain. Then, a more realistic scenario is assessed, which can more accurately reproduce the shape of a tethered macromolecule. The simulations presented here confirm that it is more likely for a polymer to undergo a collapse conformation rather than a stretched one, as a collapse conformation can be realized in more different ways. Also, they confirm the “mushroom” shape of polymers close to a surface. From this simple approach, the conformation entropy of a model 100‐unit polymer close to a surface is estimated to contribute with over 129 toward its collapse. This conformation entropy is higher than that of typical hydrogen bonds and even barriers that keep proteins folded. As such, entropic collapse of macromolecules plays an important role in realizing the mushroom shape of attached polymers and can be the driving force in protein folding, while the polypeptide chain emerges from the ribosome.
more »
« less
Designing active colloidal folders
Can active forces be exploited to drive the consistent collapse of an active polymer into a folded structure? In this paper, we introduce and perform numerical simulations of a simple model of active colloidal folders and show that a judicious inclusion of active forces into a stiff colloidal chain can generate designable and reconfigurable two-dimensional folded structures. The key feature is to organize the forces perpendicular to the chain backbone according to specific patterns (sequences). We characterize the physical properties of this model and perform, using a number of numerical techniques, an in-depth statistical analysis of structure and dynamics of the emerging conformations. We discovered a number of interesting features, including the existence of a direct correspondence between the sequence of the active forces and the structure of folded conformations, and we discover the existence of an ensemble of highly mobile compact structures capable of moving from conformation to conformation. Finally, akin to protein design problems, we discuss a method that is capable of designing specific target folds by sampling over sequences of active forces.
more »
« less
- Award ID(s):
- 2003444
- PAR ID:
- 10363443
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 156
- Issue:
- 9
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- Article No. 094901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sign Gradient Descent Algorithms for Accelerated Kinetostatic Protein Folding in Nanorobotics DesignNumerical simulations of protein folding enable the design of protein-based nanomachines and nanorobots by predicting folded three-dimensional protein structures with high accuracy and revealing the protein conformation transitions during folding and unfolding. In the kinetostatic compliance method (KCM) for folding simulations, protein molecules are represented as ensembles of rigid nano-linkages connected by chemical bonds, and the folding process is driven by the kinetostatic influence of nonlinear interatomic force fields until the system converges to a free-energy minimum of the protein. Despite its strengths, the conventional KCM framework demands an excessive number of iterations to reach folded protein conformations, with each iteration requiring costly computations of interatomic force fields. To address these limitations, this work introduces a family of sign gradient descent (SGD) algorithms for predicting folded protein structures. Unlike the heuristic-based iterations of the conventional KCM framework, the proposed SGD algorithms rely on the sign of the free-energy gradient to guide the kinetostatic folding process. Owing to their faster and more robust convergence, the proposed SGD-based algorithms reduce the computational burden of interatomic force field evaluations required to reach folded conformations. Their effectiveness is demonstrated through numerical simulations of KCM-based folding of protein backbone chains.more » « less
-
A hybrid approach for coarse-graining helical peptoids: Solvation, secondary structure, and assemblyProtein mimics such as peptoids form self-assembled nanostructures whose shape and function are governed by the side chain chemistry and secondary structure. Experiments have shown that a peptoid sequence with a helical secondary structure assembles into microspheres that are stable under various conditions. The conformation and organization of the peptoids within the assemblies remains unknown and is elucidated in this study via a hybrid, bottom-up coarse-graining approach. The resultant coarse-grained (CG) model preserves the chemical and structural details that are critical for capturing the secondary structure of the peptoid. The CG model accurately captures the overall conformation and solvation of the peptoids in an aqueous solution. Furthermore, the model resolves the assembly of multiple peptoids into a hemispherical aggregate that is in qualitative agreement with the corresponding results from experiments. The mildly hydrophilic peptoid residues are placed along the curved interface of the aggregate. The composition of the residues on the exterior of the aggregate is determined by two conformations adopted by the peptoid chains. Hence, the CG model simultaneously captures sequence-specific features and the assembly of a large number of peptoids. This multiscale, multiresolution coarse-graining approach could help in predicting the organization and packing of other tunable oligomeric sequences of relevance to biomedicine and electronics.more » « less
-
Abstract Structures at serine‐proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)‐(4‐iodophenyl)hydroxyproline [hyp(4‐I‐Ph)]. The crystal structure of Boc‐Ser‐hyp(4‐I‐Ph)‐OMe had two molecules in the unit cell. One molecule exhibitedcis‐proline and a type VIa2 β‐turn (BcisD). Thecis‐proline conformation was stabilized by a C–H/O interaction between Pro C–Hαand the Ser side‐chain oxygen. NMR data were consistent with stabilization ofcis‐proline by a C–H/O interaction in solution. The other crystallographically observed molecule hadtrans‐Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac‐Ser‐hyp(4‐I‐Ph)‐OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation andtrans‐Pro. Structures at Ser‐Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser‐Pro versus Ala–Pro sequences were compared to identify bases for Ser stabilization of local structures. C–H/O interactions between the Ser side‐chain Oγand Pro C–Hαwere observed in 45% of structures with Ser‐cis‐Pro in the PDB, with nearly all Ser‐cis‐Pro structures adopting a type VI β‐turn. 53% of Ser‐trans‐Pro sequences exhibited main‐chain COi•••HNi+3or COi•••HNi+4hydrogen bonds, with Ser as theiresidue and Pro as thei + 1 residue. These structures were overwhelmingly either type I β‐turns or N‐terminal capping motifs on α‐helices or 310‐helices. These results indicate that Ser‐Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγcapable of engaging in a hydrogen bond with the amide N–H of thei + 2 (type I β‐turn or 310‐helix; Serχ1t) ori + 3 (α‐helix; Serχ1g+) residue. Non‐prolinecisamide bonds can also be stabilized by C–H/O interactions.more » « less
-
Performing full-resolution atomistic simulations of nucleic acid folding has remained a challenge for biomolecular modeling. Understanding how nucleic acids fold and how they transition between different folded structures as they unfold and refold has important implications for biology. This paper reports a theoretical model and computer simulation of the ab initio folding of DNA inverted repeat sequences. The formulation is based on an all-atom conformational model of the sugar-phosphate backbone via chain closure, and it incorporates three major molecular-level driving forces—base stacking, counterion-induced backbone self-interactions, and base pairing—via separate analytical theories designed to capture and reproduce the effects of the solvent without requiring explicit water and ions in the simulation. To accelerate computational throughput, a mixed numerical/analytical algorithm for the calculation of the backbone conformational volume is incorporated into the Monte Carlo simulation, and special stochastic sampling techniques were employed to achieve the computational efficiency needed to fold nucleic acids from scratch. This paper describes implementation details, benchmark results, and the advantages and technical challenges with this approach.more » « less
An official website of the United States government
