Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 30, 2026
-
Free, publicly-accessible full text available January 9, 2026
-
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C–Br bonds into C–Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br–) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.more » « less
-
Parabens are antimicrobial additives found in a wide array of consumer products. However, the halogenated compounds formed from parabens during wastewater disinfection are a potential environmental concern. In order to identify these transformation products and investigate their mechanism of formation, a synthetic route to ethyl parabens labeled with the stable isotope carbon‐13 at specific positions within the benzene ring was developed. This efficient two‐step procedure starts from commercially available13C‐labeled phenols and involves (1) initial acylation of the phenol via a Houben–Hoesch reaction with trichloroacetonitrile followed by (2) a modified haloform reaction of the resulting trichloromethyl ketone to afford the corresponding13C‐labeled ethyl parabens in 65%–80% overall yield. The scope of the modified haloform reaction was also investigated, allowing for the synthesis of other parabens derived from primary or secondary alcohols, including13C‐ and deuterium‐labeled esters. In addition, 4‐hydroxybenzoic acid can be formed directly from the common trichloromethyl ketone intermediate upon treatment with lithium hydroxide. This protocol complements existing methods for preparing13C‐labeled paraben derivatives and offers the specific advantages of exhibiting complete regioselectivity in the Houben–Hoesch reaction (to form thepara‐disubstituted product) and avoiding the need for protecting groups in the modified haloform reaction that forms the paraben esters.more » « less
An official website of the United States government
