skip to main content


Search for: All records

Award ID contains: 2003815

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Phonons, the ubiquitous quanta of vibrational energy, play a vital role in the performance of quantum technologies. Conversely, unintended coupling to phonons degrades qubit performance and can lead to correlated errors in superconducting qubit systems. Regardless of whether phonons play an enabling or deleterious role, they do not typically admit control over their spectral properties, nor the possibility of engineering their dissipation to be used as a resource. Here we show that coupling a superconducting qubit to a bath of piezoelectric surface acoustic wave phonons enables a novel platform for investigating open quantum systems. By shaping the loss spectrum of the qubit via the bath of lossy surface phonons, we demonstrate preparation and dynamical stabilization of superposition states through the combined effects of drive and dissipation. These experiments highlight the versatility of engineered phononic dissipation and advance the understanding of mechanical losses in superconducting qubit systems.

     
    more » « less
  2. Free, publicly-accessible full text available October 7, 2024
  3. null (Ed.)
    Abstract Piezoelectric surface acoustic waves (SAWs) are powerful for investigating and controlling elementary and collective excitations in condensed matter. In semiconductor two-dimensional electron systems SAWs have been used to reveal the spatial and temporal structure of electronic states, produce quantized charge pumping, and transfer quantum information. In contrast to semiconductors, electrons trapped above the surface of superfluid helium form an ultra-high mobility, two-dimensional electron system home to strongly-interacting Coulomb liquid and solid states, which exhibit non-trivial spatial structure and temporal dynamics prime for SAW-based experiments. Here we report on the coupling of electrons on helium to an evanescent piezoelectric SAW. We demonstrate precision acoustoelectric transport of as little as ~0.01% of the electrons, opening the door to future quantized charge pumping experiments. We also show SAWs are a route to investigating the high-frequency dynamical response, and relaxational processes, of collective excitations of the electronic liquid and solid phases of electrons on helium. 
    more » « less