skip to main content


Title: Phononic bath engineering of a superconducting qubit
Abstract

Phonons, the ubiquitous quanta of vibrational energy, play a vital role in the performance of quantum technologies. Conversely, unintended coupling to phonons degrades qubit performance and can lead to correlated errors in superconducting qubit systems. Regardless of whether phonons play an enabling or deleterious role, they do not typically admit control over their spectral properties, nor the possibility of engineering their dissipation to be used as a resource. Here we show that coupling a superconducting qubit to a bath of piezoelectric surface acoustic wave phonons enables a novel platform for investigating open quantum systems. By shaping the loss spectrum of the qubit via the bath of lossy surface phonons, we demonstrate preparation and dynamical stabilization of superposition states through the combined effects of drive and dissipation. These experiments highlight the versatility of engineered phononic dissipation and advance the understanding of mechanical losses in superconducting qubit systems.

 
more » « less
Award ID(s):
2142846 2003815
NSF-PAR ID:
10428703
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Surface acoustic waves are commonly used in classical electronics applications, and their use in quantum systems is beginning to be explored, as evidenced by recent experiments using acoustic Fabry–Pérot resonators. Here we explore their use for quantum communication, where we demonstrate a single-phonon surface acoustic wave transmission line, which links two physically separated qubit nodes. Each node comprises a microwave phonon transducer, an externally controlled superconducting variable coupler, and a superconducting qubit. Using this system, precisely shaped individual itinerant phonons are used to coherently transfer quantum information between the two physically distinct quantum nodes, enabling the high-fidelity node-to-node transfer of quantum states as well as the generation of a two-node Bell state. We further explore the dispersive interactions between an itinerant phonon emitted from one node and interacting with the superconducting qubit in the remote node. The observed interactions between the phonon and the remote qubit promise future quantum-optics-style experiments with itinerant phonons.

     
    more » « less
  2. Abstract

    Hybrid quantum systems are essential for the realization of distributed quantum networks. In particular, piezo-mechanics operating at typical superconducting qubit frequencies features low thermal excitations, and offers an appealing platform to bridge superconducting quantum processors and optical telecommunication channels. However, integrating superconducting and optomechanical elements at cryogenic temperatures with sufficiently strong interactions remains a tremendous challenge. Here, we report an integrated superconducting cavity piezo-optomechanical platform where 10 GHz phonons are resonantly coupled with photons in a superconducting cavity and a nanophotonic cavity at the same time. Taking advantage of the large piezo-mechanical cooperativity (Cem ~7) and the enhanced optomechanical coupling boosted by a pulsed optical pump, we demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion. This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons.

     
    more » « less
  3. Abstract

    Quantum computing has the potential to revolutionize computing, but its significant sensitivity to noise requires sophisticated error correction and mitigation. Traditionally, noise on the quantum device is characterized directly through qubit and gate measurements, but this approach has drawbacks in that it does not adequately capture the effect of noise on realistic multi-qubit applications. In this paper, we simulate the relaxation of stationary quantum states on a quantum computer to obtain a unique spectroscopic fingerprint of the computer’s noise. In contrast to traditional approaches, we obtain the frequency profile of the noise as it is experienced by the simulated stationary quantum states. Data from multiple superconducting-qubit IBM processors show that noise generates a bath within the simulation that exhibits both colored noise and non-Markovian behavior. Our results provide a direction for noise mitigation but also suggest how to use noise for quantum simulations of open systems.

     
    more » « less
  4. Abstract

    Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction1,2offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low for logical performance to improve with increasing code size. Here we report the measurement of logical qubit performance scaling across several code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find that our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, in terms of both logical error probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7 × 10−6logical error per cycle floor set by a single high-energy event (1.6 × 10−7excluding this event). We accurately model our experiment, extracting error budgets that highlight the biggest challenges for future systems. These results mark an experimental demonstration in which quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.

     
    more » « less
  5. Abstract

    We report on scalable heterointegration of superconducting electrodes and epitaxial semiconductor quantum dots (QDs) on strong piezoelectric and optically nonlinear lithium niobate. The implemented processes combine the sputter-deposited thin film superconductor niobium nitride and III–V compound semiconductor membranes onto the host substrate. The superconducting thin film is employed as a zero-resistivity electrode material for a surface acoustic wave resonator with internal quality factorsQ17000representing a three-fold enhancement compared to identical devices with normal conducting electrodes. Superconducting operation of400MHzresonators is achieved to temperaturesT>7Kand electrical radio frequency powersPrf>+9dBm. Heterogeneously integrated single QDs couple to the resonant phononic field of the surface acoustic wave resonator operated in the superconducting regime. Position and frequency selective coupling mediated by deformation potential coupling is validated using time-integrated and time-resolved optical spectroscopy. Furthermore, acoustoelectric charge state control is achieved in a modified device geometry harnessing large piezoelectric fields inside the resonator. The hybrid QD—surface acoustic wave resonator can be scaled to higher operation frequencies and smaller mode volumes for quantum phase modulation and transduction between photons and phonons via the QD. Finally, the employed materials allow for the realization of other types of optoelectronic devices, including superconducting single photon detectors and integrated photonic and phononic circuits.

     
    more » « less