Abstract We describe an integrated modelling approach to accelerate the search for novel, single-phase, multicomponent materials with high magnetocrystalline anisotropy (MCA). For a given system we predict the nature of atomic ordering, its dependence on the magnetic state, and then proceed to describe the consequent MCA, magnetisation, and magnetic critical temperature (Curie temperature). Crucially, within our modelling framework, the same ab initio description of a material’s electronic structure determines all aspects. We demonstrate this holistic method by studying the effects of alloying additions in FeNi, examining systems with the general stoichiometries Fe4Ni3Xand Fe3Ni4X, for additives includingX = Pt, Pd, Al, and Co. The atomic ordering behaviour predicted on adding these elements, fundamental for determining a material’s MCA, is rich and varied. Equiatomic FeNi has been reported to require ferromagnetic order to establish the tetragonal L10order suited for significant MCA. Our results show that when alloying additions are included in this material, annealing in an applied magnetic field and/or below a material’s Curie temperature may also promote tetragonal order, along with an appreciable effect on the predicted hard magnetic properties.
more »
« less
Experimental realization of linearly polarized x-ray detected ferromagnetic resonance
Abstract We present the first theoretical and experimental evidence of time-resolved dynamic x-ray magnetic linear dichroism (XMLD) measurements of GHz magnetic precessions driven by ferromagnetic resonance in both metallic and insulating thin films. Our findings show a dynamic XMLD in both ferromagnetic Ni80Fe20and ferrimagnetic Ni0.65Zn0.35Al0.8Fe1.2O4for different measurement geometries and linear polarizations. A detailed analysis of the observed signals reveals the importance of separating different harmonic components in the dynamic signal in order to identify the XMLD response without the influence of competing contributions. In particular, RF magnetic resonance elicits a large dynamic XMLD response at the fundamental frequency under experimental geometries with oblique x-ray polarization. The geometric range and experimental sensitivity can be improved by isolating the 2ωFourier component of the dynamic response. These results illustrate the potential of dynamic XMLD and represent a milestone accomplishment toward the study of GHz spin dynamics in systems beyond ferromagnetic order.
more »
« less
- Award ID(s):
- 2003914
- PAR ID:
- 10361773
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- New Journal of Physics
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1367-2630
- Page Range / eLocation ID:
- Article No. 013030
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nanosheets composed of stacked atomic layers exhibit unique magnetic, electrical, and electrochemical properties. Here, we report the effect of iron substitution on the structure and magnetism of nickel hydroxide, Ni(OH)2, nanosheets. Ni(OH)2 and iron-substituted Ni(OH)2 (5, 10, 20, and 50 atomic % Fe substitution) were synthesized using a rapid microwave-assisted hydrothermal process. Scanning and transmission electron microscopy show the materials are polycrystalline nanosheets that aggregate into micron-sized clusters. From X-ray diffraction characterization, iron substitutes into the α-Ni(OH)2 lattice up to 20 at. % substitution. The nanosheets exhibit different in-plane and through-plane domain sizes, and Fe substitution affects the nanocrystallite shape anisotropy. The magnetic response differs with Fe substitution: 0% and 5% Fe are ferromagnetic, while samples with 10% and 20% Fe are ferrimagnetic. The competing interactions between magnetization sublattices and the magnetic anisotropy due to the crystalline and shape anisotropy of the nanosheets lead to magnetization reversal at low temperatures. The correlation between higher coercivity and larger nanocrystalline size anisotropy with higher Fe % supports that magnetic anisotropy contributes to the observed ferrimagnetism. The interplay of morphology and magnetic response with Fe-substituted Ni(OH)2 nanosheets points to new ways to influence electron interactions in layered materials which has implications for batteries, catalysis, sensors, and electronics.more » « less
-
Abstract Rare‐earth iron garnets (REIG) have recently become the materials platform of choice for spintronic studies on ferrimagnetic insulators. However, thus far the materials studied have mainly been REIG with a single rare earth species such as thulium, yttrium, or terbium iron garnets. In this study, magnetometry, ferromagnetic resonance, and magneto‐optical Kerr effect imaging is used to explore the continuous variation of magnetic properties as a function of composition for YxTm3−xiron garnet (YxTm3−xIG) thin films grown by pulsed laser deposition on gadolinium gallium garnet substrates. It is reported that the tunability of the magnetic anisotropy energy, with full control achieved over the type of anisotropy (from perpendicular, to isotropic, to an in‐plane easy axis) on the same substrate. In addition, a nonmonotonic composition‐dependent anisotropy term is reported, which is ascribed to growth‐induced anisotropy similar to what is reported in garnet thin films grown by liquid‐phase epitaxy. Ferromagnetic resonance shows linear variation of the damping and the g‐factor across the composition range, consistent with prior theoretical work. Domain imaging reveals differences in reversal modes, remanant states, and domain sizes in YxTm3−xiron‐garnet thin films as a function of anisotropy.more » « less
-
The orbital component of magnetization dynamics, e.g., excited by ferromagnetic resonance (FMR), may generate “orbitronic” effects in nanomagnetic devices. Yet, distinguishing orbital dynamics from spin dynamics remains a challenge. Here, we employ x-ray magnetic circular dichroism (XMCD) to quantify the ratio between the orbital and spin components of FMR-induced dynamics in a Ni80Fe20 film. By applying the XMCD sum rules at the Ni L3,2 edges, we obtain an orbital-to-spin ratio of 0.108 ± 0.005 for the dynamic magnetization. This value is consistent with 0.102 ± 0.008 for the static magnetization, probed with the same x-ray beam configuration as the dynamic XMCD experiment. The demonstrated method presents a possible path to disentangle orbitronic effects from their spintronic counterparts in magnetic media.more » « less
-
Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications.more » « less
An official website of the United States government
