skip to main content


Search for: All records

Award ID contains: 2003978

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report modulation of exciton dissociation dynamics in quantum dots (QD) connected with photochromic molecules. Our results show that switching the configuration of photochromic molecules changes the inter-QD potential barrier height which has a major impact on the charge tunnelling and exciton dissociation. The switching of the dominant exciton decay pathway between the radiative recombination and exciton dissociation results in switchable photoluminescence intensity from QDs. Implications of our findings for optical memory and optical computing applications are discussed. 
    more » « less
  2. null (Ed.)
    Imperfect passivation of surface charge traps on metal halide perovskite (MHP) nanocrystals remains a key obstacle to achieving higher performance in optoelectronic devices. Due to the strong ionic nature of MHPs, ionic salts have been identified as effective surface charge trap passivating ligands. In this study, based on photoluminescence quantum yield (PLQY) and time-resolved photoluminescence (TRPL) measurements on cesium lead bromide nanocrystals (CsPbBr 3 NCs), we find that the pairing between cation and anion of an ionic salt results in a significant impact on trap passivation. Using density of functional theory (DFT) calculations, we identify the binding interaction between the cation and anion of the ionic pair to be a major factor in determining the trap passviation efficacy. 
    more » « less