skip to main content


Search for: All records

Award ID contains: 2004050

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hydrophobic hydration, whereby water spontaneously structures around hydrophobic and amphiphilic molecules, plays a key role in the process of surfactant micelle formation and micellar oil solubilization. Using vibrational Raman multivariate curve resolution spectroscopy, we characterized changes in the hydrophobic hydration occurring within nonionic alkylphenol ethoxylate surfactant Tergitol NP‐12 micelles as a function of oil solubilization. We report trends in the changes of hydrophobic hydration depending on the chain length of the oil as well as the presence of a halogen atom in the oil chemical structure. Changes in hydrophobic hydration directly correlate to changes in the physical properties of the micellar solution, including cloud point and micelle hydrodynamic diameter. We compare hydrophobic hydration of Tergitol NP‐12 to nonionic linear alkyl ethoxylate surfactant Makon TD‐12 and ionic sodium dodecyl sulfate and observe similar trends; the molecular structure of the oil has the largest impact on the hydrophobic hydration. We believe these studies contribute to a fundamental understanding of the importance of hydrophobic hydration in surfactant and oil aggregates, especially as it relates to micellar oil solubilization, and provide insight into how the molecular solubilizate can impact micellar structure, size, and stability.

     
    more » « less
  2. Free, publicly-accessible full text available November 16, 2024
  3. Following the emergence of the SARS-CoV-2 (Covid-19) pandemic, interest in understanding antibody diagnostic testing has increased. We describe a quick and inexpensive technique that enabled students to print their own microfluidic devices that can be used to house an immunoassay for detecting a Human Immunodeficiency Virus (HIV) antibody. Both qualitative diagnostic assays and quantitative binding assays were carried out to characterize the HIV interaction with a target antibody. By performing these hands-on low-cost experiments in the analytical chemistry lab course, students were exposed to 3D fabrication, microfluidic technology, surface chemistry, protein-ligand binding affinity studies, and immunoassays within the time frame of two four–hour laboratory periods. 
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)