skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2004111

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the design and performance of a four-phased radiofrequency (RF) carpet system for ion transport between 200–600 mbar, significantly higher than previously demonstrated RF carpet applications. The RF carpet, designed with a 160 $$\upmu $$ μ m pitch, is applied to the lateral collection of ions in xenon at pressures up to 600 mbar. We demonstrate transport efficiency of caesium ions across varying pressures, and compare with microscopic simulations made in the SIMION package. The novel use of an N-phased RF carpet can achieve ion levitation and controlled lateral motion in a denser environment than is typical for RF ion transport in gases. This feature makes such carpets strong candidates for ion transport to single ion sensors envisaged for future neutrinoless double-beta decay experiments in xenon gas. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract We investigate the performance of , a 7.5 GPU-accelerated photon propagation tool compared with a single-threaded simulation. We compare the simulations using an improved model of the gaseous time projection chamber. Performance results suggest that improves simulation speeds by between$$58.47\pm {0.02}$$ 58.47 ± 0.02 and$$181.39\pm {0.28}$$ 181.39 ± 0.28 times relative to a CPU-only simulation and these results vary between different types of GPU and CPU. A detailed comparison shows that the number of detected photons, along with their times and wavelengths, are in good agreement between and . 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. A<sc>bstract</sc> If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle cosθamong the two decay electrons, and the electron energy spectra,T1andT2. In this work, we study the statistical accuracy and precision in measuring these kinematic observables in a future xenon gas detector with the added capability to precisely locate the decay vertex. For realistic detector conditions (a gas pressure of 10 bar and spatial resolution of 4 mm), we find that the average$$ \overline{\cos\ \theta } $$ cos θ ¯ and$$ \overline{T_1} $$ T 1 ¯ values can be reconstructed with a precision of 0.19 and 110 keV, respectively, assuming that only 10 neutrinoless double beta decay events are detected. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  4. Abstract The imaging of individual Ba2+ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba2+ion imaging inside a high-pressure xenon gas environment. Ba2+ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm2located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in136Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Abstract We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cadmium samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+  ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+and Cd2+also demonstrated for this purpose. 
    more » « less
  6. Fluorophores covalently bound to azacrown ether ionophores can be assembled into sensitive turn-on chemosensors. The size specificity and electron rich nature of the ionophore's binding domain contributes to both selectivity... 
    more » « less
    Free, publicly-accessible full text available September 6, 2026
  7. The synthesis of fluorescent sensors and their covalent binding to surfaces are described. These functionalized surfaces permit barium tagging in neutrinoless double beta decay experiments, which can prove that the neutrino is its own antiparticle. 
    more » « less
    Free, publicly-accessible full text available January 16, 2026
  8. Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from$$^{83\textrm{m}}$$ 83 m Kr calibration electron captures ($$E\sim 45$$ E 45  keV), the position of origin of low-energy events is determined to 2 cm precision with bias$$< 1~$$ < 1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks ($$E\ge ~1.5$$ E 1.5  MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q$$_{\beta \beta }$$ β β in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation. 
    more » « less
  9. A Snowmass 2021 white paper: For the attention of IF08 and NF05 We introduce a novel particle detection concept for large-volume, fine granularity particle detection: The Ion Fluorescence Chamber (IFC). In electronegative gases such as SF6 and SeF6, ionizing particles create ensembles of positive and negative ions. In the IFC, positive ions are drifted to a chemically active cathode where they react with a custom organic turn-on fluorescent monolayer encoding a long-lived 2D image. The negative ions are sensed electrically with course resolution at the anode, inducing an optical microscope to travel to and scan the corresponding cathode location for the fluorescent image. This concept builds on technologies developed for barium tagging in neutrinoless double beta decay, combining the ultra-fine imaging capabilities of an emulsion detector with the monolithic sensing of a time projection chamber. The result is a high precision imaging detector over arbitrarily large volumes without the challenges of ballooning channel count or system complexity. After outlining the concept, we discuss R\&D to be undertaken to demonstrate it, and explore application to both directional dark matter searches in SF6 and searches for neutrinoless double beta decay in large 82SeF6 chambers. 
    more » « less