A<sc>bstract</sc> In this work, we present a complete theoretical framework for analyzing the distribution of polarized hadrons within jets, with and without measuring the transverse momentum relative to the standard jet axis. Using soft-collinear effective theory (SCET), we derive the factorization and provide the theoretical calculation of both semi-inclusive and exclusive fragmenting jet functions (FJFs) under longitudinal and transverse polarization. With the polarized FJFs, one gains access to a variety of new observables that can be used for extracting both collinear and transverse momentum dependent parton distribution functions (PDFs) and fragmentation functions (FFs). As examples, we provide numerical results for the spin asymmetry$$ {A}_{TU,T}^{\cos \left({\phi}_S-{\hat{\phi}}_{S_h}\right)} $$ from polarized semi-inclusive hadron-in-jet production in polarizedppcollisions at RHIC kinematics, where a transversely polarized quark would lead to the transverse spin of the final-state hadron inside the jet and is thus sensitive to the transversity fragmentation functions. Similarly, another spin asymmetry,$$ {A}_{TU,L}^{\cos \left({\phi}_q-{\phi}_S\right)} $$ from polarized exclusive hadron-in-jet production in polarizedepcollisions at EIC kinematics would allow us to access the helicity fragmentation functions. These observables demonstrate promising potential in investigating transverse momentum dependent PDFs and FFs and are worthwhile for further measurements.
more »
« less
This content will become publicly available on July 15, 2026
Reconstructing neutrinoless double beta decay event kinematics in a xenon gas detector with vertex tagging
A<sc>bstract</sc> If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle cosθamong the two decay electrons, and the electron energy spectra,T1andT2. In this work, we study the statistical accuracy and precision in measuring these kinematic observables in a future xenon gas detector with the added capability to precisely locate the decay vertex. For realistic detector conditions (a gas pressure of 10 bar and spatial resolution of 4 mm), we find that the average$$ \overline{\cos\ \theta } $$ and$$ \overline{T_1} $$ values can be reconstructed with a precision of 0.19 and 110 keV, respectively, assuming that only 10 neutrinoless double beta decay events are detected.
more »
« less
- Award ID(s):
- 2004111
- PAR ID:
- 10645141
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 7
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> Measurements of inclusive and normalized differential cross sections of the associated production of top quark-antiquark and bottom quark-antiquark pairs,$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$ , are presented. The results are based on data from proton-proton collisions collected by the CMS detector at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The cross sections are measured in the lepton+jets decay channel of the top quark pair, using events containing exactly one isolated electron or muon and at least five jets. Measurements are made in four fiducial phase space regions, targeting different aspects of the$$ \textrm{t}\overline{\textrm{t}}\textrm{b}\overline{\textrm{b}} $$ process. Distributions are unfolded to the particle level through maximum likelihood fits, and compared with predictions from several event generators. The inclusive cross section measurements of this process in the fiducial phase space regions are the most precise to date. In most cases, the measured inclusive cross sections exceed the predictions with the chosen generator settings. The only exception is when using a particular choice of dynamic renormalization scale,$$ {\mu}_{\textrm{R}}=\frac{1}{2}{\prod}_{i=\textrm{t},\overline{\textrm{t}},\textrm{b},\overline{\textrm{b}}}{m}_{\textrm{T},i}^{1/4} $$ , where$$ {m}_{\textrm{T},i}^2={m}_i^2+{p}_{\textrm{T},i}^2 $$ are the transverse masses of top and bottom quarks. The differential cross sections show varying degrees of compatibility with the theoretical predictions, and none of the tested generators with the chosen settings simultaneously describe all the measured distributions.more » « less
-
Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « less
-
A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.more » « less
-
A<sc>bstract</sc> This paper presents measurements of top-antitop quark pair ($$ t\overline{t} $$ ) production in association with additionalb-jets. The analysis utilises 140 fb−1of proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or fourb-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, andb-jet pair properties. Observable quantities characterisingb-jets originating from the top quark decay and additionalb-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with$$ t\overline{t}b\overline{b} $$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.more » « less
An official website of the United States government
