skip to main content

Search for: All records

Award ID contains: 2004167

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cyclohexene oxide (CHO) is a useful building block for the synthesis of novel materials and is a model substrate for polymerization catalyst development. The driving force for CHO polymerization is derived from its bicyclic structure, which combines the release of the enthalpy from epoxide ring-opening (ca. −15 kcal/mol) and a twist-chair-to-chair conformation shift in the cyclohexane ring (ca. −5 kcal/mol) upon enchainment. The lack of regio-defined functional handles attached to the CHO monomer limits the ability to both pre- and post-functionalize the resultant materials and establish structure–property relationships, which reduces the versatility of currently accessible materials. We report the synthesis of two series of CHO derivatives with butyl, allyl, and halogen substituents in the α and β positions relative to the epoxide ring. Adding substituents to the CHO ring was found to affect polymerization kinetics, with 4-substituted (β) CHO being more reactive than 3-substituted (α) CHO analogs when initiated with a mono(μ-alkoxo)bis(alkylaluminum) pre-catalyst. Polymer thermal properties depended on substituent location and identity. Halogenated CHO rings were most reactive and produced the highest glass transition temperatures in the resultant polymers (up to 105 °C). Density functional theory revealed a possible mechanistic explanation consistent with the observed differences in polymerization rate for the 3- and 4-substituted CHOs derived from a combination of steric and thermodynamic considerations. 
    more » « less
    Free, publicly-accessible full text available July 11, 2024
  2. Polyethers and polythioethers are often made through the polymerization of epoxides and thiiranes, respectively, using Earth-abundant metal compounds. Control over polymer properties is dictated by the method used to synthesize them, which are outlined in this article.

    more » « less