skip to main content


This content will become publicly available on October 31, 2024

Title: Unveiling the Role of Compositional Drifts on the Tack of Pressure‐Sensitive‐Adhesives
Abstract

Pressure‐sensitive‐adhesives (PSAs) are pervasive in electronic, automobile, packaging, and biomedical applications due to their ability to stick to numerous surfaces without undergoing chemical reactions. These materials are typically synthesized by the free radical copolymerization of alkyl acrylates and acrylic acid, leading to an ensemble of polymer chains with varying composition and molecular weight. Here, reversible addition−fragmentation chain‐transfer (RAFT) copolymerizations in a semi‐batch reactor are used to tailor the molecular architecture and bulk mechanical properties of acrylic copolymers. In the absence of cross‐links, the localization of acrylic acid toward the chain ends leads to microphase separation, creep resistance, and enhanced tack. However, in the presence of Al(acac)3crosslinker, the creep resistance remains unchanged and mostly the large‐strain mechanical properties are affected. This behavior is attributed to microphase separation, but also to a change in the energy required to break physical associations, and untangle and elongate associative polymers to large deformations.

 
more » « less
NSF-PAR ID:
10473461
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
224
Issue:
24
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths. 
    more » « less
  2. Abstract

    Biobased poly(γ-methyl-α-methylene-γ-butyrolactone) (PMMBL), an acrylic polymer bearing a cyclic lactone ring, has attracted increasing interest because it not only is biorenewable but also exhibits superior properties to petroleum-based linear analog poly(methyl methacrylate) (PMMA). However, such property enhancement has been limited to resistance to heat and solvent, and mechanically both types of polymers are equally brittle. Here we report the expeditious synthesis of well-defined PMMBL-based ABA tri-block copolymers (tri-BCPs)—enabled by dual-initiating and living frustrated Lewis pairs (FLPs)—which are thermoplastic elastomers showing much superior mechanical properties, especially at high working temperatures (80–130 °C), to those of PMMA-based tri-BCPs. The FLPs consist of a bulky organoaluminum Lewis acid and a series of newly designed bis(imino)phosphine superbases bridged by an alkyl linker, which promote living polymerization of MMBL. Uniquely, such bisphosphine superbases initiate the chain growth from both P-sites concurrently, enabling the accelerated synthesis of tri-BCPs in a one-pot, two-step procedure. The results from mechanistic studies, including the single crystal structure of the dually initiated active species, detailed polymerizations, and kinetic studies confirm the livingness of the polymerization and support the proposed polymerization mechanism featuring the dual initiation and subsequent chain growth from both P-sites of the superbase di-initiator.

     
    more » « less
  3. ABSTRACT

    Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 1193–1202

     
    more » « less
  4. Abstract

    The ability to modulate polyacrylamide hydrogel surface morphology, rheological properties, adhesion and frictional response is demonstrated by combining acrylic acid copolymerization and network confinement via grafting to a surface. Specifically, atomic force microscopy imaging reveals both micellar and lamellar microphase separations in grafted copolymer hydrogels. Bulk characterization is conducted to reveal the mechanisms underlying microstructural changes and ordering of the polymer network, supporting that they stem from the balance between hydrogen bonding in the substrate‐grafted hydrogels, electrostatic interactions, and a decrease in osmotically active charges. The morphological modulation has direct impacts on the spatial distribution of surface stiffness and adhesion. Furthermore, lateral force measurements show that the microphase separations lead to speed and load‐dependent lubrication regimes as well as spatial variation of friction. A proof of concept via salt screening demonstrates the dynamic control of surface morphology and adhesion. This work advances the knowledge necessary to design complex hydrogel interfaces that enable spatial and dynamic control of surface morphology and thereby of friction and adhesion through modulation of hydrogel composition and surface confinement, which is of significance for applications in biomedical devices, soft tissue design, soft robotics, and other engineered tribosystems.

     
    more » « less
  5. Abstract

    Biofouling at the solid–liquid–air interface poses a serious threat to public health and environmental sustainability. Despite the variety of antifouling materials developed, few have proven to resist fouling at the three‐phase contact line. In fact, antifouling at the liquid–solid interface and the air–solid interface call for opposite surface properties—hydrophilic for the former and hydrophobic for the latter. By devising a new design strategy, one that maximizes the mismatch of surface energies of comonomers for dynamic chain reorientation at the three‐phase contact line, an antifouling amphiphilic copolymer is obtained. The novel amphiphilic copolymer reduces the formation of biofilms byPseudomonas aeruginosaand outperforms a zwitterionic polymer, the current leading antifouling chemistry. The copolymer is synthesized using initiated chemical vapor deposition (iCVD), which leads to molecular‐level heterogeneities composed of zwitterionic and fluorinated moieties by avoiding undesirable surface tension effects. Atomic force microscopy, x‐ray diffractometry, and Fourier transform infrared spectroscopy confirm the copolymer's amphiphilicity and lack of microphase separation. Scanning electron microscopy provides visual confirmation of the diminished biofilm growth. The versatile iCVD technique is amenable to a range of substrates and enables the application of this new material to food processing, healthcare, and underwater performance.

     
    more » « less