skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2005181

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The realization of low thermal conductivity at high temperatures (0.11 W m−1K−1800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high‐entropy spinel oxide with 8 cations (HESO‐8 NPs) with a relatively high packing density of ≈50%, is reported. The high‐density HESO‐8 NP pellets possess around 1000‐fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux. The low thermal conductivity and diffusivity are realized by suppressing all three modes of heat transfer, namely solid conduction, gas conduction, and thermal radiation, via stable nanoconstriction and infrared‐absorbing nature of the HESO‐8 NPs, which are enabled by remarkable microstructural stability against coarsening at high temperatures due to the high entropy. This work can elucidate the design of the next‐generation high‐temperature thermal insulation materials using high‐entropy ceramic nanostructures. 
    more » « less
  2. Abstract Radiative cooling has been recently intensively explored for thermal management and enhancing energy efficiency. Yet, traditional materials with singular emissivity fall short in dynamic thermal management, highlighting the need for materials that can adjust their thermal radiation in real time. Active modulation methods, requiring external stimuli such as mechanical stretch, electric potential, or humidity change, offer adaptability but can increase energy use and complexity. Passive approaches, using materials' inherent thermal‐responsive properties, face manufacturing and scalability challenges. Here, a scalable yet effective passive approach is introduced for adaptive thermal modulation based on gold (Au) and liquid crystal elastomer (LCE) with a reversible response to environmental temperature changes. This modulator enables a “low thermal resistance” state through actuation‐induced microcracks that expose a high‐emissivity polymer substrate, and a “high thermal resistance” state by closing these microcracks and forming a high thermal resistance air gap between the modulator and the target object. The flexible design and fixed external dimensions of the Au‐LCE thermal modulator make it adaptable to various surface geometries. Furthermore, by adjusting the LCE's chemical composition, the modulator's transition temperature can be tailored, broadening its applications from enhancing building energy efficiency to improving clothing thermal comfort. 
    more » « less
  3. Abstract Heat conduction in solids is typically governed by the Fourier’s law describing a diffusion process due to the short wavelength and mean free path for phonons and electrons. Surface phonon polaritons couple thermal photons and optical phonons at the surface of polar dielectrics, possessing much longer wavelength and propagation length, representing an excellent candidate to support extraordinary heat transfer. Here, we realize clear observation of thermal conductivity mediated by surface phonon polaritons in SiO2nanoribbon waveguides of 20-50 nm thick and 1-10 μm wide and also show non-Fourier behavior in over 50-100 μm distance at room and high temperature. This is enabled by rational design of the waveguide to control the mode size of the surface phonon polaritons and its efficient coupling to thermal reservoirs. Our work laid the foundation for manipulating heat conduction beyond the traditional limit via surface phonon polaritons waves in solids. 
    more » « less