skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2005640

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A finite-dimensional CAT(0) cube complexXis equipped with several well-studied boundaries. These include theTits boundary$$\partial _TX$$ T X (which depends on the CAT(0) metric), theRoller boundary$${\partial _R}X$$ R X (which depends only on the combinatorial structure), and thesimplicial boundary$$\partial _\triangle X$$ X (which also depends only on the combinatorial structure). We use a partial order on a certain quotient of$${\partial _R}X$$ R X to define a simplicial Roller boundary$${\mathfrak {R}}_\triangle X$$ R X . Then, we show that$$\partial _TX$$ T X ,$$\partial _\triangle X$$ X , and$${\mathfrak {R}}_\triangle X$$ R X are all homotopy equivalent,$$\text {Aut}(X)$$ Aut ( X ) -equivariantly up to homotopy. As an application, we deduce that the perturbations of the CAT(0) metric introduced by Qing do not affect the equivariant homotopy type of the Tits boundary. Along the way, we develop a self-contained exposition providing a dictionary among different perspectives on cube complexes. 
    more » « less
  2. LetXbe a nonelementary\mathrm{CAT}(0)cubical complex. We prove that ifXis essential and irreducible, then the contact graph ofX(introduced by Hagen (2014)) is unbounded and its boundary is homeomorphic to the regular boundary ofX(defined by Fernós (2018) and Kar–Sageev (2016)). Using this, we reformulate the Caprace–Sageev’s rank-rigidity theorem in terms of the action on the contact graph. LetGbe a group with a nonelementary action onX, and let (Z_{n})be a random walk corresponding to a generating probability measure onGwith finite second moment. Using this identification of the boundary of the contact graph, we prove a central limit theorem for (Z_{n}), namely that\frac{d(Z_{n} o,o)-nA}{\sqrt{n}}converges in law to a non-degenerate Gaussian distribution (A\hspace{-0.7pt}=\hspace{-0.7pt}\lim_{n\to\infty}\hspace{-0.7pt}\frac{d(Z_{n}o,o)}{n}is the drift of the random walk, ando\in Xis an arbitrary basepoint). 
    more » « less