skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Homotopy equivalent boundaries of cube complexes
Abstract A finite-dimensional CAT(0) cube complexXis equipped with several well-studied boundaries. These include theTits boundary$$\partial _TX$$ T X (which depends on the CAT(0) metric), theRoller boundary$${\partial _R}X$$ R X (which depends only on the combinatorial structure), and thesimplicial boundary$$\partial _\triangle X$$ X (which also depends only on the combinatorial structure). We use a partial order on a certain quotient of$${\partial _R}X$$ R X to define a simplicial Roller boundary$${\mathfrak {R}}_\triangle X$$ R X . Then, we show that$$\partial _TX$$ T X ,$$\partial _\triangle X$$ X , and$${\mathfrak {R}}_\triangle X$$ R X are all homotopy equivalent,$$\text {Aut}(X)$$ Aut ( X ) -equivariantly up to homotopy. As an application, we deduce that the perturbations of the CAT(0) metric introduced by Qing do not affect the equivariant homotopy type of the Tits boundary. Along the way, we develop a self-contained exposition providing a dictionary among different perspectives on cube complexes.  more » « less
Award ID(s):
2005640
PAR ID:
10487866
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Geometriae Dedicata
Volume:
218
Issue:
2
ISSN:
0046-5755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ B , where$$ \mathcal{B} $$ B may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ B includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ B was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ A L B ,$$ {\mathcal{A}}_R^B $$ A R B that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ B , and in particular for$$ \mathcal{B} $$ B =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ A L B L ,$$ {\mathcal{A}}_R^{B_L} $$ A R B L defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ H B L B L turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ H B ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ H B L B R , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR
    more » « less
  2. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less
  3. Over a local ring R R , the theory of cohomological support varieties attaches to any bounded complex M M of finitely generated R R -modules an algebraic variety V R ( M ) {\mathrm {V}}_R(M) that encodes homological properties of M M . We give lower bounds for the dimension of V R ( M ) {\mathrm {V}}_R(M) in terms of classical invariants of R R . In particular, when R R is Cohen–Macaulay and not complete intersection we find that there are always varieties that cannot be realized as the cohomological support of any complex. When M M has finite projective dimension, we also give an upper bound for dim ⁡<#comment/> V R ( M ) \dim {\mathrm {V}}_R(M) in terms of the dimension of the radical of the homotopy Lie algebra of R R . This leads to an improvement of a bound due to Avramov, Buchweitz, Iyengar, and Miller on the Loewy lengths of finite free complexes, and it recovers a result of Avramov and Halperin on the homotopy Lie algebra of R R . Finally, we completely classify the varieties that can occur as the cohomological support of a complex over a Golod ring. 
    more » « less
  4. Abstract A classical parking function of lengthnis a list of positive integers$$(a_1, a_2, \ldots , a_n)$$ ( a 1 , a 2 , , a n ) whose nondecreasing rearrangement$$b_1 \le b_2 \le \cdots \le b_n$$ b 1 b 2 b n satisfies$$b_i \le i$$ b i i . The convex hull of all parking functions of lengthnis ann-dimensional polytope in$${\mathbb {R}}^n$$ R n , which we refer to as the classical parking function polytope. Its geometric properties have been explored in Amanbayeva and Wang (Enumer Combin Appl 2(2):Paper No. S2R10, 10, 2022) in response to a question posed by Stanley (Amer Math Mon 127(6):563–571, 2020). We generalize this family of polytopes by studying the geometric properties of the convex hull of$${\textbf{x}}$$ x -parking functions for$${\textbf{x}}=(a,b,\dots ,b)$$ x = ( a , b , , b ) , which we refer to as$${\textbf{x}}$$ x -parking function polytopes. We explore connections between these$${\textbf{x}}$$ x -parking function polytopes, the Pitman–Stanley polytope, and the partial permutahedra of Heuer and Striker (SIAM J Discrete Math 36(4):2863–2888, 2022). In particular, we establish a closed-form expression for the volume of$${\textbf{x}}$$ x -parking function polytopes. This allows us to answer a conjecture of Behrend et al. (2022) and also obtain a new closed-form expression for the volume of the convex hull of classical parking functions as a corollary. 
    more » « less
  5. Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ ε 2 conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ Ω + , Ω R n + 1 , and$$x\in \mathbb{R}^{n+1}$$ x R n + 1 ,$$r>0$$ r > 0 , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ ε n ( x , r ) : = 1 r n inf H + H n ( ( ( B ( x , r ) H + ) Ω + ) ( ( B ( x , r ) H ) Ω ) ) , where the infimum is taken over all open affine half-spaces$$H^{+}$$ H + such that$$x \in \partial H^{+}$$ x H + and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ H = R n + 1 H + . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ x R n + 1 where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ 0 1 ε n ( x , r ) 2 d r r < is$$n$$ n -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ Ω + ,$$\Omega ^{-}$$ Ω are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ Ω + Ω satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ x Ω + Ω and$$r>0$$ r > 0 , we denote by$$\alpha ^{\pm }(x,r)$$ α ± ( x , r ) the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ Ω ± B ( x , r ) . We show that, up to a set of$$\mathcal{H}^{n}$$ H n measure zero,$$x$$ x is a tangent point for both$$\partial \Omega ^{+}$$ Ω + and$$\partial \Omega ^{-}$$ Ω if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ 0 1 min ( 1 , α + ( x , r ) + α ( x , r ) 2 ) d r r < . The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ ε 2 conjecture of Carleson. 
    more » « less