skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2006530

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper considers networks where user traffic is regulated through deterministic traffic profiles, e.g., token buckets, and requires hard delay bounds. The network's goal is to minimize the resources it needs to meet those bounds. The paper explores how reprofiling, i.e., proactively modifying how user traffic enters the network, can be of benefit. Reprofiling produces "smoother" flows but introduces an up-front access delay that forces tighter network delays. The paper explores this trade-off and demonstrates that, unlike what holds in the single-hop case, reprofiling can be of benefit even when "optimal" schedulers are available at each hop. 
    more » « less
  2. The need to guarantee hard delay bounds to traffic flows with deterministic traffic profiles, e.g., token buckets, arises in several network settings. It is of interest to offer such guarantees while minimizing network bandwidth. The paper explores a basic building block, namely, a single hop configuration, towards realizing such a goal. The main results are in the form of optimal solutions for meeting local deadlines under schedulers of varying complexity and therefore cost. The results demonstrate how judiciously modifying flows' traffic profiles, i.e., reprofiling them, can help simple schedulers reduce the bandwidth they require, often performing nearly as well as more complex ones. 
    more » « less
  3. IoT devices are increasingly the source of data for machine learning (ML) applications running on edge servers. Data transmissions from devices to servers are often over local wireless networks whose bandwidth is not just limited but, more importantly, variable. Furthermore, in cyber-physical systems interacting with the physical environment, image offloading is also commonly subject to timing constraints. It is, therefore, important to develop an adaptive approach that maximizes the inference performance of ML applications under timing constraints and the resource constraints of IoT devices. In this paper, we use image classification as our target application and propose progressive neural compression (PNC) as an efficient solution to this problem. Although neural compression has been used to compress images for different ML applications, existing solutions often produce fixed-size outputs that are unsuitable for timing-constrained offloading over variable bandwidth. To address this limitation, we train a multi-objective rateless autoencoder that optimizes for multiple compression rates via stochastic taildrop to create a compression solution that produces features ordered according to their importance to inference performance. Features are then transmitted in that order based on available bandwidth, with classification ultimately performed using the (sub)set of features received by the deadline. We demonstrate the benefits of PNC over state-of-the-art neural compression approaches and traditional compression methods on a testbed comprising an IoT device and an edge server connected over a wireless network with varying bandwidth. 
    more » « less
  4. null (Ed.)
    Much of today's traffic flows between datacenters over private networks. The operators of those networks have access to detailed traffic profiles with performance goals that need to be met as efficiently as possible, e.g., realizing latency guarantees with minimal network bandwidth. Of particular interest is the extent to which traffic (re)shaping can be of benefit. The paper focuses on the most basic network configuration, namely, a single link network, with extensions to more general, multi-node networks discussed in a companion paper. The main results are in the form of optimal solutions for different types of schedulers of varying complexity. They demonstrate how judicious traffic shaping can help lower complexity schedulers perform nearly as well as more complex ones. 
    more » « less