skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimizing network bandwidth under latency constraints: The single node case
Much of today's traffic flows between datacenters over private networks. The operators of those networks have access to detailed traffic profiles with performance goals that need to be met as efficiently as possible, e.g., realizing latency guarantees with minimal network bandwidth. Of particular interest is the extent to which traffic (re)shaping can be of benefit. The paper focuses on the most basic network configuration, namely, a single link network, with extensions to more general, multi-node networks discussed in a companion paper. The main results are in the form of optimal solutions for different types of schedulers of varying complexity. They demonstrate how judicious traffic shaping can help lower complexity schedulers perform nearly as well as more complex ones.  more » « less
Award ID(s):
2006530
PAR ID:
10301515
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings 33rd International Teletraffic Congress (ITC 33)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The need to guarantee hard delay bounds to traffic flows with deterministic traffic profiles, e.g., token buckets, arises in several network settings. It is of interest to offer such guarantees while minimizing network bandwidth. The paper explores a basic building block, namely, a single hop configuration, towards realizing such a goal. The main results are in the form of optimal solutions for meeting local deadlines under schedulers of varying complexity and therefore cost. The results demonstrate how judiciously modifying flows' traffic profiles, i.e., reprofiling them, can help simple schedulers reduce the bandwidth they require, often performing nearly as well as more complex ones. 
    more » « less
  2. This paper considers networks where user traffic is regulated through deterministic traffic profiles, e.g., token buckets, and requires hard delay bounds. The network's goal is to minimize the resources it needs to meet those bounds. The paper explores how reprofiling, i.e., proactively modifying how user traffic enters the network, can be of benefit. Reprofiling produces "smoother" flows but introduces an up-front access delay that forces tighter network delays. The paper explores this trade-off and demonstrates that, unlike what holds in the single-hop case, reprofiling can be of benefit even when "optimal" schedulers are available at each hop. 
    more » « less
  3. Emerging 5G systems will need to efficiently support both enhanced mobile broadband traffic (eMBB) and ultra-low- latency communications (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while immediately satisfying URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of URLLC superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocation decisions of the eMBB scheduler. Next we consider a more general class of (convex/threshold) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but minislot-homogeneous policies. A key observation is that unlike the linear rate loss model, for the convex and threshold rate loss models, optimal eMBB and URLLC schedul- ing decisions do not de-couple and joint optimization is necessary to satisfy the dual objectives. We validate the characteristics and benefits of our schedulers via simulation. 
    more » « less
  4. Sural, Shamik; Lu, Haibing (Ed.)
    Modern network infrastructures are in a constant state of transformation, in large part due to the exponential growth of Internet of Things (IoT) devices. The unique properties of IoT-connected networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. In this paper we propose a new measurement tool, Intrinsic Dimensionality (ID), to aid in analyzing and classifying network traffic. A proxy for dataset complexity, ID can be used to understand the network as a whole, aiding in tasks such as network management and provisioning. We use ID to evaluate several modern network datasets empirically. Showing that, for network and device-level data, generated using IoT methodologies, the ID of the data fits into a low dimensional representation. Additionally we explore network data complexity at the sample level using Local Intrinsic Dimensionality (LID) and propose a novel unsupervised intrusion detection technique, the Weighted Hamming LID Estimator. We show that the algortihm performs better on IoT network datasets than the Autoencoder, KNN, and Isolation Forests. Finally, we propose the use of synthetic data as an additional tool for both network data measurement as well as intrusion detection. Synthetically generated data can aid in building a more robust network dataset, while also helping in downstream tasks such as machine learning based intrusion detection models. We explore the effects of synthetic data on ID measurements, as well as its role in intrusion detection systems. 
    more » « less
  5. The Internet of Things (IoT) is revolutionizing society by connect- ing people and devices seamlessly and providing enhanced user experience and functionalities. However, the unique properties of IoT networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. We propose a new measurement tool for IoT network data to aid in analyzing and classifying such network traffic. We use evidence from both security and machine learning research, which suggests that the complexity of a dataset can be used as a metric to determine the trustworthiness of data. We test the complexity of IoT networks using Intrinsic Dimensionality (ID), a theoretical complexity mea- surement based on the observation that a few variables can often describe high dimensional datasets. We use ID to evaluate four mod- ern IoT network datasets empirically, showing that, for network and device-level data generated using IoT methodologies, the ID of the data fits into a low dimensional representation; this makes such data amenable to the use of machine learning algorithms for anomaly detection. 
    more » « less