Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The “tuning-fork” (TF) analysis of CO and Hαemission has been used to estimate the lifetimes of molecular clouds in nearby galaxies. With simple model calculations, we show that this analysis does not necessarily estimate cloud lifetimes, but instead captures a duration of the cloud evolutionary cycle, from dormant to star-forming, and then back to a dormant phase. We adopt a hypothetical setup in which molecular clouds (e.g., traced in CO) live forever and form stars (e.g., Hiiregions) at some frequency, which then drift away from the clouds. The TF analysis still returns a timescale for the immortal clouds. This model requires drifting motion to separate the newborn stars from the clouds, and we discuss its origin. We also discuss the physical origin of the characteristic spatial separation term in the TF analysis and a bias due to systematic error in the determination of the reference timescale.more » « less
-
Abstract We analyze the CO-to-H2conversion factor (αCO) in the nearby barred spiral galaxy M83. We present new Hiobservations from the VLA and single-dish GBT in the disk of the galaxy, and combine them with maps of CO(1-0) integrated intensity and dust surface density from the literature.αCOand the gas-to-dust ratio (δGDR) are simultaneously derived in annuli of 2 kpc width fromR= 1–7 kpc. We find thatαCOandδGDRboth increase radially, by a factor of ∼2–3 from the center to the outskirts of the disk. The luminosity-weighted averages over the disk areαCO= 3.14 (2.06, 4.96) andδGDR= 137 (111, 182) at the 68% (1σ) confidence level. These are consistent with theαCOandδGDRvalues measured in the Milky Way. In addition to possible variations ofαCOdue to the radial metallicity gradient, we test the possibility of variations inαCOdue to changes in the underlying cloud populations, as a function of galactic radius. Using a truncated power-law molecular cloud CO luminosity function and an empirical power-law relation for cloud mass and luminosity, we show that the changes in the underlying cloud population may account for a factor of ∼1.5–2.0 radial change inαCO.more » « less
-
Abstract We report a CO(J= 3−2) detection of 23 molecular clouds in the extended ultraviolet (XUV) disk of the spiral galaxy M83 with the Atacama Large Millimeter/submillimeter Array. The observed 1 kpc2region is at about 1.24 times the optical radius (R25) of the disk, where CO(J= 2–1) was previously not detected. The detection and nondetection, as well as the level of star formation (SF) activity in the region, can be explained consistently if the clouds have the mass distribution common among Galactic clouds, such as Orion A—with star-forming dense clumps embedded in thick layers of bulk molecular gas, but in a low-metallicity regime where their outer layers are CO-deficient and CO-dark. The cloud and clump masses, estimated from CO(3−2), range from 8.2 × 102to 2.3 × 104M⊙and from 2.7 × 102to 7.5 × 103M⊙, respectively. The most massive clouds appear similar to Orion A in star formation activity as well as in mass, as expected if the cloud mass structure is common. The overall low SF activity in the XUV disk could be due to the relative shortage of gas in the molecular phase. The clouds are distributed like chains up to 600 pc (or longer) in length, suggesting that the trigger of cloud formation is on large scales. The common cloud mass structure also justifies the use of high-JCO transitions to trace the total gas mass of clouds, or galaxies, even in the high-zuniverse. This study is the first demonstration that CO(3−2) is an efficient tracer of molecular clouds even in low-metallicity environments.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds.more » « less
An official website of the United States government
