skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First Detection of the Molecular Cloud Population in the Extended Ultraviolet Disk of M83
Abstract We report a CO(J= 3−2) detection of 23 molecular clouds in the extended ultraviolet (XUV) disk of the spiral galaxy M83 with the Atacama Large Millimeter/submillimeter Array. The observed 1 kpc2region is at about 1.24 times the optical radius (R25) of the disk, where CO(J= 2–1) was previously not detected. The detection and nondetection, as well as the level of star formation (SF) activity in the region, can be explained consistently if the clouds have the mass distribution common among Galactic clouds, such as Orion A—with star-forming dense clumps embedded in thick layers of bulk molecular gas, but in a low-metallicity regime where their outer layers are CO-deficient and CO-dark. The cloud and clump masses, estimated from CO(3−2), range from 8.2 × 102to 2.3 × 104Mand from 2.7 × 102to 7.5 × 103M, respectively. The most massive clouds appear similar to Orion A in star formation activity as well as in mass, as expected if the cloud mass structure is common. The overall low SF activity in the XUV disk could be due to the relative shortage of gas in the molecular phase. The clouds are distributed like chains up to 600 pc (or longer) in length, suggesting that the trigger of cloud formation is on large scales. The common cloud mass structure also justifies the use of high-JCO transitions to trace the total gas mass of clouds, or galaxies, even in the high-zuniverse. This study is the first demonstration that CO(3−2) is an efficient tracer of molecular clouds even in low-metallicity environments.  more » « less
Award ID(s):
2006600
PAR ID:
10384406
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 3
Size(s):
Article No. 3
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Central Molecular Zone (CMZ) is the way station at the heart of our Milky Way Galaxy, connecting gas flowing in from Galactic scales with the central nucleus. Key open questions remain about its 3D structure, star formation properties, and role in regulating this gas inflow. In this work, we identify a hierarchy of discrete structures in the CMZ using column density maps from Paper I (C. Battersby et al.) We calculate the physical (N(H2),Tdust, mass, radius) and kinematic (HNCO, HCN, and HC3N moments) properties of each structure as well as their bolometric luminosities and star formation rates. We compare these properties with regions in the Milky Way disk and external galaxies. Despite the fact that the CMZ overall is well below the Gao-Solomon dense gas star formation relation (and in modest agreement with the Schmidt–Kennicutt relation), individual structures on the scale of molecular clouds generally follow these star formation relations and agree well with other Milky Way and extragalactic regions. We find that individual CMZ structures require a large external pressure (Pe/kB> 107−9K cm−3) to be considered bound; however, simple estimates suggest that most CMZ molecular-cloud-sized structures are consistent with being in pressure-bounded virial equilibrium. We perform power-law fits to the column density probability distribution functions of the inner 100 pc, SgrB2, and the outer 100 pc of the CMZ as well as several individual molecular cloud structures and find generally steeper power-law slopes (−9 <α< −2) compared with the literature (−6 <α< −1). 
    more » « less
  2. Abstract Protostellar disks are an ubiquitous part of the star formation process and the future sites of planet formation. As part of the Early Planet Formation in Embedded Disks large program, we present high angular resolution dust continuum (∼40 mas) and molecular line (∼150 mas) observations of the Class 0 protostar IRAS 15398–3359. The dust continuum is small, compact, and centrally peaked, while more extended dust structures are found in the outflow directions. We perform a 2D Gaussian fitting and find the deconvolved size and 2σradius of the dust disk to be 4.5 × 2.8 au and 3.8 au, respectively. We estimate the gas+dust disk mass assuming optically thin continuum emission to be 0.6MJ–1.8MJ, indicating a very low mass disk. The CO isotopologues trace components of the outflows and inner envelope, while SO traces a compact, rotating disk-like component. Using several rotation curve fittings on the position–velocity diagram of the SO emission, the lower limits of the protostellar mass and gas disk radius are 0.022Mand 31.2 au, respectively, from our Modified 2 single power-law fitting. A conservative upper limit of the protostellar mass is inferred to be 0.1M. The protostellar mass accretion rate and the specific angular momentum at the protostellar disk edge are found to be in the range of (1.3–6.1) × 10−6Myr−1and (1.2–3.8) × 10−4km s−1pc, respectively, with an age estimated between 0.4 × 104yr and 7.5 × 104yr. At this young age with no clear substructures in the disk, planet formation would likely not yet have started. This study highlights the importance of high-resolution observations and systematic fitting procedures when deriving dynamical properties of deeply embedded Class 0 protostars. 
    more » « less
  3. Abstract Henize 2–10 is a dwarf starburst galaxy hosting a ∼106Mblack hole (BH) that is driving an ionized outflow and triggering star formation within the central ∼100 pc of the galaxy. Here, we present Atacama Large Millimeter/submillimeter Array continuum observations from 99 to 340 GHz, as well as spectral line observations of the molecules CO (1–0, 3–2), HCN (1–0, 3–2), and HCO+ (1–0, 3–2), with a focus on the BH and its vicinity. Incorporating centimeter-wave radio measurements from the literature, we show that the spectral energy distribution of the BH is dominated by synchrotron emission from 1.4 to 340 GHz, with a spectral index ofα≈ − 0.5. We analyze the spectral line data and identify an elongated molecular gas structure around the BH with a velocity distinct from the surrounding regions. The physical extent of this molecular gas structure is ≈130 pc × 30 pc and the molecular gas mass is ∼106M. Despite an abundance of molecular gas in this general region, the position of the BH is significantly offset from the peak intensity, which may explain why the BH is radiating at a very low Eddington ratio. Our analysis of the spatially resolved line ratio between COJ= 3–2 andJ= 1–0 implies that the CO gas in the vicinity of the BH is highly excited, particularly at the interface between the BH outflow and the regions of triggered star formation. This suggests that the cold molecular gas is being shocked by the bipolar outflow from the BH, supporting the case for positive BH feedback. 
    more » « less
  4. Abstract Stars form within molecular clouds, so characterizing the physical states of molecular clouds is key to understanding the process of star formation. Cloud structure and stability are frequently assessed using metrics including the virial parameter and Larson scaling relationships between cloud radius, velocity dispersion, and surface density. Departures from the typical Galactic relationships between these quantities have been observed in low-metallicity environments. The amount of H2gas in cloud envelopes without corresponding CO emission is expected to be high under these conditions; therefore, this CO-dark gas could plausibly be responsible for the observed variations in cloud properties. We derive simple corrections that can be applied to empirical clump properties (mass, radius, velocity dispersion, surface density, and virial parameter) to account for CO-dark gas in clumps following power-law and Plummer mass density profiles. We find that CO-dark gas is not likely to be the cause of departures from Larson’s relationships in low-metallicity regions, but that virial parameters may be systematically overestimated. We demonstrate that correcting for CO-dark gas is critical for accurately comparing the dynamical state and evolution of molecular clouds across diverse environments. 
    more » « less
  5. Context.The detection of supermassive black holes (SMBHs) in high-redshift luminous quasars may require a phase of rapid accretion, and as a precondition, substantial gas influx toward seed black holes (BHs) from kiloparsec or parsec scales. Our previous research demonstrated the plausibility of such gas supply for BH seeds within star-forming giant molecular clouds (GMCs) with high surface density (∼104 M pc−2), facilitating “hyper-Eddington” accretion via efficient feeding by dense clumps, which are driven by turbulence and stellar feedback. Aims.This article presents an investigation of the impacts of feedback from accreting BHs on this process, including radiation, mechanical jets, and highly relativistic cosmic rays. Methods.We ran a suite of numerical simulations to explore diverse parameter spaces of BH feedback, including the subgrid accretion model, feedback energy efficiency, mass loading factor, and initial metallicity. Results.Using radiative feedback models inferred from the slim disk, we find that hyper-Eddington accretion is still achievable, yielding BH bolometric luminosities of as high as 1041 − 1044 erg/s, depending on the GMC properties and specific feedback model assumed. We find that the maximum possible mass growth of seed BHs (ΔMmaxBH) is regulated by the momentum-deposition rate from BH feedback,ṗfeedback/(ṀBHc), which leads to an analytic scaling that agrees well with simulations. This scenario predicts the rapid formation of ∼104Mintermediate-massive BHs (IMBHs) from stellar-mass BHs within ∼1 Myr. Furthermore, we examine the impacts of subgrid accretion models and how BH feedback may influence star formation within these cloud complexes. 
    more » « less