Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Users on edge generate deep inference requests continuously over time. Mobile/edge devices located near users can undertake the computation of inference locally for users, e.g., the embedded edge device on an autonomous vehicle. Due to limited computing resources on one mobile/edge device, it may be challenging to process the inference requests from users with high throughput. An attractive solution is to (partially) offload the computation to a remote device in the network. In this paper, we examine the existing inference execution solutions across local and remote devices and propose an adaptive scheduler, a BPS scheduler, for continuous deep inference on collaborative edge intelligence. By leveraging data parallel, neurosurgeon, reinforcement learning techniques, BPS can boost the overall inference performance by up to 8.2× over the baseline schedulers. A lightweight compressor, FF, specialized in compressing intermediate output data for neurosurgeon, is proposed and integrated into the BPS scheduler. FF exploits the operating character of convolutional layers and utilizes efficient approximation algorithms. Compared to existing compression methods, FF achieves up to 86.9% lower accuracy loss and up to 83.6% lower latency overhead.more » « less
-
Deep neural network (DNN) inference poses unique challenges in serving computational requests due to high request intensity, concurrent multi-user scenarios, and diverse heterogeneous service types. Simultaneously, mobile and edge devices provide users with enhanced computational capabilities, enabling them to utilize local resources for deep inference processing. Moreover, dynamic inference techniques allow content-based computational cost selection per request. This paper presents Dystri, an innovative framework devised to facilitate dynamic inference on distributed edge infrastructure, thereby accommodating multiple heterogeneous users. Dystri offers a broad applicability in practical environments, encompassing heterogeneous device types, DNN-based applications, and dynamic inference techniques, surpassing the state-of-the-art (SOTA) approaches. With distributed controllers and a global coordinator, Dystri allows per-request, per-user adjustments of quality-of-service, ensuring instantaneous, flexible, and discrete control. The decoupled workflows in Dystri naturally support user heterogeneity and scalability, addressing crucial aspects overlooked by existing SOTA works. Our evaluation involves three multi-user, heterogeneous DNN inference service platforms deployed on distributed edge infrastructure, encompassing seven DNN applications. Results show Dystri achieves near-zero deadline misses and excels in adapting to varying user numbers and request intensities. Dystri outperforms baselines with accuracy improvement up to 95 ×.more » « less