This content will become publicly available on July 1, 2025
- PAR ID:
- 10555234
- Publisher / Repository:
- IEEE Transactions on Cloud Computing
- Date Published:
- Journal Name:
- IEEE Transactions on Cloud Computing
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2372-0018
- Page Range / eLocation ID:
- 830 to 843
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Deep neural network (DNN) inference poses unique challenges in serving computational requests due to high request intensity, concurrent multi-user scenarios, and diverse heterogeneous service types. Simultaneously, mobile and edge devices provide users with enhanced computational capabilities, enabling them to utilize local resources for deep inference processing. Moreover, dynamic inference techniques allow content-based computational cost selection per request. This paper presents Dystri, an innovative framework devised to facilitate dynamic inference on distributed edge infrastructure, thereby accommodating multiple heterogeneous users. Dystri offers a broad applicability in practical environments, encompassing heterogeneous device types, DNN-based applications, and dynamic inference techniques, surpassing the state-of-the-art (SOTA) approaches. With distributed controllers and a global coordinator, Dystri allows per-request, per-user adjustments of quality-of-service, ensuring instantaneous, flexible, and discrete control. The decoupled workflows in Dystri naturally support user heterogeneity and scalability, addressing crucial aspects overlooked by existing SOTA works. Our evaluation involves three multi-user, heterogeneous DNN inference service platforms deployed on distributed edge infrastructure, encompassing seven DNN applications. Results show Dystri achieves near-zero deadline misses and excels in adapting to varying user numbers and request intensities. Dystri outperforms baselines with accuracy improvement up to 95 ×.more » « less
-
Mobile applications have become increasingly sophisticated. Emerging cognitive assistance applications can involve multiple computationally intensive modules working continuously and concurrently, further straining the already limited resources on these mobile devices. While computation offloading to the edge or the cloud is still the de facto solution, existing approaches are limited by intra-application operations only or edge-/cloud-centric scheduling. Instead, we argue that operating system level coordination is needed on the mobile side to adequately support the prospects of multi-application offloading. Specifically, both the local mobile system resource and the network bandwidth to reach the cloud need to be allocated intelligently among concurrent offloading jobs. In this paper, we build a system-level scheduler service, LinkShare, that wraps over the operating system scheduler to coordinate among multiple offloading requests. We further study the scheduling requirements and suitable metrics, and find that the most intuitive approaches of minimizing the end-to- end processing time or earliest-deadline first scheduling do not work well. Instead, LinkShare adopts earliest-deadline first with limited sharing (EDF-LS), that balances real-time requirements and fairness. Extensive evaluation of an Android implementation of LinkShare shows that adding this additional scheduler is essential, and that EDF-LS reduces the deadline miss events by up to 30% compared to the baseline.more » « less
-
The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop, we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference.more » « less
-
Intelligent mobile image sensing powered by deep learning analyzes images captured by cameras from mobile devices, such as smartphones or smartwatches. It supports numerous mobile applications, such as image classification, face recognition, and camera scene detection. Unfortunately, mobile devices often lack the resources necessary for deep learning, leading to increased inference latency and rapid battery consumption. Moreover, the inference accuracy may decline over time due to potential data drift. To address these issues, we introduce a new cost-efficient framework, called Corun, designed to simultaneously handle multiple inference queries and continual model retraining/fine-tuning of a pre-trained model on a single commodity GPU in an edge server to significantly improve the inference throughput, upholding the inference accuracy. The scheduling method of Corun undertakes offline profiling to find the maximum number of concurrent inferences that can be executed along with a retraining job on a single GPU without incurring an out-of-memory error or significantly increasing the latency. Our evaluation verifies the cost-effectiveness of Corun. The inference throughput provided by Corun scales with the number of concurrent inference queries. However, the latency of inference queries and the length of a retraining epoch increase at substantially lower rates. By concurrently processing multiple inference and retraining tasks on one GPU instead of using a separate GPU for each task, Corun could reduce the number of GPUs and cost required to deploy mobile image sensing applications based on deep learning at the edge.
-
Recent breakthroughs in deep learning (DL) have led to the emergence of many intelligent mobile applications and services, but in the meanwhile also pose unprecedented computing challenges on resource-constrained mobile devices. This paper builds a collaborative deep inference system between a resource-constrained mobile device and a powerful edge server, aiming at joining the power of both on-device processing and computation offloading. The basic idea of this system is to partition a deep neural network (DNN) into a front-end part running on the mobile device and a back-end part running on the edge server, with the key challenge being how to locate the optimal partition point to minimize the end-to-end inference delay. Unlike existing efforts on DNN partitioning that rely heavily on a dedicated offline profiling stage to search for the optimal partition point, our system has a built-in online learning module, called Autodidactic Neurosurgeon (ANS), to automatically learn the optimal partition point on-the-fly. Therefore, ANS is able to closely follow the changes of the system environment by generating new knowledge for adaptive decision making. The core of ANS is a novel contextual bandit learning algorithm, called μLinUCB, which not only has provable theoretical learning performance guarantee but also is ultra-lightweight for easy real-world implementation. We implement our system on a video stream object detection testbed to validate the design of ANS and evaluate its performance. The experiments show that ANS significantly outperforms state-of-the-art benchmarks in terms of tracking system changes and reducing the end-to-end inference delay.more » « less