skip to main content


Search for: All records

Award ID contains: 2007283

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite the ubiquitous use of materials maps in modern rendering pipelines, their editing and control remains a challenge. In this paper, we present an example‐based material control method to augment input material maps based on user‐provided material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer, optimizing its latent space using differentiable rendering. Our method transfers the micro and meso‐structure textures of user provided target(s) photographs, while preserving the structure and quality of the input material. We show our methods can control existing material maps, increasing realism or generating new, visually appealing materials.

     
    more » « less
  2. Free, publicly-accessible full text available July 23, 2024
  3. Procedural modeling is now the de facto standard of material modeling in industry. Procedural models can be edited and are easily extended, unlike pixel-based representations of captured materials. In this article, we present a semi-automatic pipeline for general material proceduralization. Given Spatially Varying Bidirectional Reflectance Distribution Functions (SVBRDFs) represented as sets of pixel maps, our pipeline decomposes them into a tree of sub-materials whose spatial distributions are encoded by their associated mask maps. This semi-automatic decomposition of material maps progresses hierarchically, driven by our new spectrum-aware material matting and instance-based decomposition methods. Each decomposed sub-material is proceduralized by a novel multi-layer noise model to capture local variations at different scales. Spatial distributions of these sub-materials are modeled either by a by-example inverse synthesis method recovering Point Process Texture Basis Functions (PPTBF) [ 30 ] or via random sampling. To reconstruct procedural material maps, we propose a differentiable rendering-based optimization that recomposes all generated procedures together to maximize the similarity between our procedural models and the input material pixel maps. We evaluate our pipeline on a variety of synthetic and real materials. We demonstrate our method’s capacity to process a wide range of material types, eliminating the need for artist designed material graphs required in previous work [ 38 , 53 ]. As fully procedural models, our results expand to arbitrary resolution and enable high-level user control of appearance. 
    more » « less
  4. null (Ed.)
    This study investigates the potential impact of subsurface light transport on gloss perception for the purposes of broadening our understanding of visual appearance in computer graphics applications. Gloss is an important attribute for characterizing material appearance. We hypothesize that subsurface scattering of light impacts the glossiness perception. However, gloss has been traditionally studied as a surface-related quality and the findings in the state-of-the-art are usually based on fully opaque materials, although the visual cues of glossiness can be impacted by light transmission as well. To address this gap and to test our hypothesis, we conducted psychophysical experiments and found that subjects are able to tell the difference in terms of gloss between stimuli that differ in subsurface light transport but have identical surface qualities and object shape. This gives us a clear indication that subsurface light transport contributes to a glossy appearance. Furthermore, we conducted additional experiments and found that the contribution of subsurface scattering to gloss varies across different shapes and levels of surface roughness. We argue that future research on gloss should include transparent and translucent media and to extend the perceptual models currently limited to surface scattering to more general ones inclusive of subsurface light transport. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)