Procedural modeling allows for an automatic generation of large amounts of similar assets, but there is limited control over the generated output. We address this problem by introducing Automatic Differentiable Procedural Modeling (ADPM). The forward procedural model generates a final editable model. The user modifies the output interactively, and the modifications are transferred back to the procedural model as its parameters by solving an inverse procedural modeling problem. We present an auto‐differentiable representation of the procedural model that significantly accelerates optimization. In ADPM the procedural model is always available, all changes are non‐destructive, and the user can interactively model the 3D object while keeping the procedural representation. ADPM provides the user with precise control over the resulting model comparable to non‐procedural interactive modeling. ADPM is node‐based, and it generates hierarchical 3D scene geometry converted to a differentiable computational graph. Our formulation focuses on the differentiability of high‐level primitives and bounding volumes of components of the procedural model rather than the detailed mesh geometry. Although this high‐level formulation limits the expressiveness of user edits, it allows for efficient derivative computation and enables interactivity. We designed a new optimizer to solve for inverse procedural modeling. It can detect that an edit is under‐determined and has degrees of freedom. Leveraging cheap derivative evaluation, it can explore the region of optimality of edits and suggest various configurations, all of which achieve the requested edit differently. We show our system's efficiency on several examples, and we validate it by a user study.
- Award ID(s):
- 2007283
- PAR ID:
- 10356279
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 41
- Issue:
- 2
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Raman microscopy is a powerful analytical technique for materials and life sciences that enables mapping the spatial distribution of the chemical composition of a sample. State-of-the-art Raman microscopes, based on point-scanning frequency-domain detection, have long (∼1s) pixel dwell times, making it challenging to acquire images of a significant area (e.g., 100×100µm). Here we present a compact wide-field Raman microscope based on a time-domain Fourier-transform approach, which enables parallel acquisition of the Raman spectra on all pixels of a 2D detector. A common-path birefringent interferometer with exceptional delay stability and reproducibility can rapidly acquire Raman maps (∼30min for a 250000pixel image) with high spatial (<1µm) and spectral (∼23cm−1) resolutions. Time-domain detection allows us to disentangle fluorescence and Raman signals, which can both be measured separately. We validate the system by Raman imaging plastic microbeads and demonstrate its multimodal operation by capturing fluorescence and Raman maps of a multilayer-WSe2sample, providing complementary information on the strain and number of layers of the material.
-
Abstract To facilitate the study of solar flares and active regions, we have created a modeling framework, the freely distributed GX Simulator IDL package, that combines 3D magnetic and plasma structures with thermal and nonthermal models of the chromosphere, transition region, and corona. Its object-based modular architecture, which runs on Windows, Mac, and Unix/Linux platforms, offers the ability to either import 3D density and temperature distribution models, or to assign numerically defined coronal or chromospheric temperatures and densities, or their distributions, to each individual voxel. GX Simulator can apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel, as well as compute and investigate the spatial and spectral properties of radio, (sub)millimeter, EUV, and X-ray emissions calculated from the model, and quantitatively compare them with observations. The package includes a fully automatic model production pipeline that, based on minimal users input, downloads the required SDO/HMI vector magnetic field data, performs potential or nonlinear force-free field extrapolations, populates the magnetic field skeleton with parameterized heated plasma coronal models that assume either steady-state or impulsive plasma heating, and generates non-LTE density and temperature distribution models of the chromosphere that are constrained by photospheric measurements. The standardized models produced by this pipeline may be further customized through specialized IDL scripts, or a set of interactive tools provided by the graphical user interface. Here, we describe the GX Simulator framework and its applications.
-
This article presents the first use of shape forming elements (SFEs) to produce architected composites from multiple materials in an extrusion process. Each SFE contains a matrix of flow channels connecting input and output ports, where materials are routed between corresponding ports. The mathematical operations of rotation and shifting are described, and design automation is explored using Bayesian optimization and genetic algorithms to select fifty or more parameters for minimizing two objective functions. The first objective aims to match a target cross-section by minimizing the pixel-by-pixel error, which is weighted with the structural similarity index (SSIM). The second objective seeks to maximize information content by minimizing the SSIM relative to a white image. Satisfactory designs are achieved with better objective function values observed in rectangular rather than square flow channels. Validation extrusion of modeling clay demonstrates that while SFEs impose complex material transformations, they do not achieve the material distributions predicted by the digital model. Using the SSIM for results comparison, initial stages yielded SSIM values near 0.8 between design and simulation, indicating a good initial match. However, the control of material processing tended to decline with successive SFE processing with the SSIM of the extruded output dropping to 0.023 relative to the design intent. Flow simulations more closely replicated the observed structures with SSIM values around 0.4 but also failed to predict the intended cross-sections. The evaluation highlights the need for advanced modeling techniques to enhance the predictive accuracy and functionality of SFEs for biomedical, energy storage, and structural applications.
-
null (Ed.)Recent advances in big spatial data acquisition and deep learning allow novel algorithms that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic and produces a 3D approximation of an urban area given satellite imagery and global-scale data, including road network, population, and elevation data. By analyzing the values and the distribution of urban data, e.g., parcels, buildings, population, and elevation, we construct a procedural approximation of a city at a large-scale. Our approach has three main components: (1) procedural model generation to create parcel and building geometries, (2) parcel area estimation that trains neural networks to provide initial parcel sizes for a segmented satellite image of a city block, and (3) an optional optimization that can use partial knowledge of overall average building footprint area and building counts to improve results. We demonstrate and evaluate our approach on cities around the globe with widely different structures and automatically yield procedural models with up to 91,000 buildings, and spanning up to 150 km 2 . We obtain both a spatial arrangement of parcels and buildings similar to ground truth and a distribution of building sizes similar to ground truth, hence yielding a statistically similar synthetic urban space. We produce procedural models at multiple scales, and with less than 1% error in parcel and building areas in the best case as compared to ground truth and 5.8% error on average for tested cities.more » « less