Morph detection is of paramount significance when the integrity of Automatic Face Recognition (AFR) systems are concerned. Considering the risks incurred by morphing attacks, a robust automated morph detector is required which can distinguish authentic bona fide samples from altered morphed images. We leverage the wavelet sub-band decomposition of an input image, yielding the fine-grained spatial-frequency content of the input image. To enhance the detection of morphed images, our goal is to find the most discriminative information across frequency channels and spatial domain. To this end, we propose an end-to-end attention-based deep morph detector which assimilates the most discriminative wavelet sub-bands of a given image which are obtained by a group sparsity representation learning scheme. Specifically, our group sparsity-constrained Deep Neural Network (DNN) learns the most discriminative wavelet sub-bands (channels) of an input image while the attention mechanism captures the most discriminative spatial regions of input images for the downstream task of morph detection. To this end, we adopt three attention mechanisms to diversify our refined features for morph detection. As the first attention mechanism, we employ the Convolutional Block Attention Module (CBAM) which provides us with refined feature maps. As the second attention mechanism, compatibility scores across spatial locationsmore »
This content will become publicly available on April 30, 2023
An Inverse Procedural Modeling Pipeline for SVBRDF Maps
Procedural modeling is now the de facto standard of material modeling in industry. Procedural models can be edited and are easily extended, unlike pixel-based representations of captured materials. In this article, we present a semi-automatic pipeline for general material proceduralization. Given Spatially Varying Bidirectional Reflectance Distribution Functions (SVBRDFs) represented as sets of pixel maps, our pipeline decomposes them into a tree of sub-materials whose spatial distributions are encoded by their associated mask maps. This semi-automatic decomposition of material maps progresses hierarchically, driven by our new spectrum-aware material matting and instance-based decomposition methods. Each decomposed sub-material is proceduralized by a novel multi-layer noise model to capture local variations at different scales. Spatial distributions of these sub-materials are modeled either by a by-example inverse synthesis method recovering Point Process Texture Basis Functions (PPTBF) [ 30 ] or via random sampling. To reconstruct procedural material maps, we propose a differentiable rendering-based optimization that recomposes all generated procedures together to maximize the similarity between our procedural models and the input material pixel maps. We evaluate our pipeline on a variety of synthetic and real materials. We demonstrate our method’s capacity to process a wide range of material types, eliminating the need for artist designed more »
- Award ID(s):
- 2007283
- Publication Date:
- NSF-PAR ID:
- 10356279
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 41
- Issue:
- 2
- Page Range or eLocation-ID:
- 1 to 17
- ISSN:
- 0730-0301
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
null (Ed.)Recent advances in big spatial data acquisition and deep learning allow novel algorithms that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic and produces a 3D approximation of an urban area given satellite imagery and global-scale data, including road network, population, and elevation data. By analyzing the values and the distribution of urban data, e.g., parcels, buildings, population, and elevation, we construct a procedural approximation of a city at a large-scale. Our approach has three main components: (1) procedural model generation to create parcel and building geometries, (2) parcel area estimation that trains neural networks to provide initial parcel sizes for a segmented satellite image of a city block, and (3) an optional optimization that can use partial knowledge of overall average building footprint area and building counts to improve results. We demonstrate and evaluate our approach on cities around the globe with widely different structures and automatically yield procedural models with up to 91,000 buildings, and spanning up to 150 km 2 . We obtain both a spatial arrangement of parcels and buildings similar tomore »
-
Autonomous educational social robots can be used to help promote literacy skills in young children. Such robots, which emulate the emotive, perceptual, and empathic abilities of human teachers, are capable of replicating some of the benefits of one-on-one tutoring from human teachers, in part by leveraging individual student’s behavior and task performance data to infer sophisticated models of their knowledge. These student models are then used to provide personalized educational experiences by, for example, determining the optimal sequencing of curricular material. In this paper, we introduce an integrated system for autonomously analyzing and assessing children’s speech and pronunciation in the context of an interactive word game between a social robot and a child. We present a novel game environment and its computational formulation, an integrated pipeline for capturing and analyzing children’s speech in real-time, and an autonomous robot that models children’s word pronunciation via Gaussian Process Regression (GPR), augmented with an Active Learning protocol that informs the robot’s behavior. We show that the system is capable of autonomously assessing children’s pronunciation ability, with ground truth determined by a post-experiment evaluation by human raters. We also compare phoneme- and word-level GPR models and discuss trade-offs of each approach in modeling children’smore »
-
Abstract Retrieving electrical impedance maps at the nanoscale rapidly via nondestructive inspection with a high signal-to-noise ratio is an unmet need, likely to impact various applications from biomedicine to energy conversion. In this study, we develop a multimodal functional imaging instrument that is characterized by the dual capability of impedance mapping and phase quantitation, high spatial resolution, and low temporal noise. To achieve this, we advance a quantitative phase imaging system, referred to as epi-magnified image spatial spectrum microscopy combined with electrical actuation, to provide complementary maps of the optical path and electrical impedance. We demonstrate our system with high-resolution maps of optical path differences and electrical impedance variations that can distinguish nanosized, semi-transparent, structured coatings involving two materials with relatively similar electrical properties. We map heterogeneous interfaces corresponding to an indium tin oxide layer exposed by holes with diameters as small as ~550 nm in a titanium (dioxide) over-layer deposited on a glass support. We show that electrical modulation during the phase imaging of a macro-electrode is decisive for retrieving electrical impedance distributions with submicron spatial resolution and beyond the limitations of electrode-based technologies (surface or scanning technologies). The findings, which are substantiated by a theoretical model that fits themore »