skip to main content


Search for: All records

Award ID contains: 2007403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose a new page-writing technique to hide secret information using the threshold voltage variation of programmed memory cells. We demonstrate the proposed technique on the state-of-the-art commercial 3D NAND flash memory chips by utilizing common user mode commands. We explore the design space metrics of interest for data hiding: bit accuracy of public and secret data and detectability of holding secret data. The proposed method ensures more than 97% accuracy of recovered secret data, with negligible accuracy loss in the public data. Our analysis shows that the proposed technique introduces negligible distortions in the threshold voltage distributions. These distortions are lower than the inherent threshold voltage variations of program states. As a result, the proposed method provides a hiding technique that is undetectable, even by a powerful adversary with low-level access to the memory chips. 
    more » « less
    Free, publicly-accessible full text available July 10, 2024
  2. Deleting data instantly from NAND flash memories incurs hefty overheads, and increases wear level. Existing solutions involve unlinking the physical page addresses making data inaccessible through standard interfaces, but they carry the risk of data leakage. An all-zero-in-place data overwrite has been proposed as a countermeasure, but it applies only to SLC flash memories. This paper introduces an instant page data sanitization method for MLC flash memories that prevents leakage of deleted information without any negative effects on valid data in shared pages. We implement and evaluate the proposed method on commercial 2D and 3D NAND flash memory chips. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Electronic device fingerprints, unique bit vectors extracted from device's physical properties, are used to differentiate between instances of functionally identical devices. This article introduces a new technique that extracts fingerprints from unique properties of partially erased NOR flash memory cells in modern microcontrollers. NOR flash memories integrated in modern systems-on-a-chip typically hold firmware and read-only data, but they are increasingly in-system-programmable, allowing designers to erase and program them during normal operation. The proposed technique leverages partial erase operations of flash memory segments that bring them into the state that exposes physical properties of the flash memory cells through a digital interface. These properties reflect semiconductor process variations and defects that are unique to each microcontroller or a flash memory segment within a microcontroller. The article explores threshold voltage variation in NOR flash memory cells for generating fingerprints and describes an algorithm for extracting fingerprints. The experimental evaluation utilizing a family of commercial microcontrollers demonstrates that the proposed technique is cost-effective, robust, and resilient to changes in voltage and temperature as well as to aging effects. 
    more » « less
  5. null (Ed.)
    Digital sanitization of flash based non-volatile memory system is a well-researched topic. Since flash memory cell holds information in the analog threshold voltage, flash cell may hold the imprints of previously written data even after digital sanitization. In this paper, we show that data is partially or completely recoverable from the flash media sanitized with “scrubbing” based technique, which is a popular technique for page deletion in NAND flash. We find that adversary may utilize the data retention property of the memory cells for recovering the deleted data using standard digital interfaces with the memory. We demonstrate data recovery from commercial flash memory chip, sanitized with scrubbing, by using partial erase operation on the chip. Our results show that analog scrubbing is needed to securely delete information in flash system. We propose and implement analog scrubbing using partial program operation based on the file creation time information. 
    more » « less