skip to main content


Search for: All records

Award ID contains: 2007469

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, Internet of Things (IoT) devices have been extensively deployed in edge networks, including smart homes and offices. Despite the exciting opportunities afforded by the advancements in the IoT, it also introduces new attack vectors and vulnerabilities in the system. Existing studies have shown that the attack graph is an effective model for performing system-level analysis of IoT security. In this paper, we study IoT system vulnerability analysis and network hardening. We first extend the concept of attack graph to weighted attack graph and design a novel algorithm for computing a shortest attack trace in a weighted attack graph. We then formulate the network hardening problem. We prove that this problem is NP-hard, and then design an exact algorithm and a heuristic algorithm to solve it. Extensive experiments on 9 synthetic IoT systems and 2 real-world smart home IoT testbeds demonstrate that our shortest attack trace algorithm is robust and fast, and our heuristic network hardening algorithm is efficient in producing near optimal results compared to the exact algorithm. 
    more » « less
  2. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less
  3. This paper studies how to provision edge computing and network resources for complex microservice-based applications (MSAs) in face of uncertain and dynamic geo-distributed demands. The complex inter-dependencies between distributed microservice components make load balancing for MSAs extremely challenging, and the dynamic geo-distributed demands exacerbate load imbalance and consequently congestion and performance loss. In this paper, we develop an edge resource provisioning model that accurately captures the inter-dependencies between microservices and their impact on load balancing across both computation and communication resources. We also propose a robust formulation that employs explicit risk estimation and optimization to hedge against potential worst-case load fluctuations, with controlled robustness-resource trade-off. Utilizing a data-driven approach, we provide a solution that provides risk estimation with measurement data of past load geo-distributions. Simulations with real-world datasets have validated that our solution provides the important robustness crucially needed in MSAs, and performs superiorly compared to baselines that neglect either network or inter-dependency constraints. 
    more » « less