skip to main content


Search for: All records

Award ID contains: 2007737

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern datacenters, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by “lining up” memory accesses from the application and the GC so that they follow similar memory access paths, thereby (1)reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely-used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely-deployed cloud systems shows MemLiner improves applications’ end-to-end performance by up to 2.5x. 
    more » « less
  2. Applications often have fast-paced release schedules, but adoption of software dependency updates can lag by years, leaving applications susceptible to security risks and unexpected breakage. To address this problem, we present UPGRADVISOR, a system that reduces developer effort in evaluating dependency updates and can, in many cases, automatically determine which updates are backward-compatible versus API-breaking. UPGRADVISOR introduces a novel co-designed static analysis and dynamic tracing mechanism to gauge the scope and effect of dependency updates on an application. Static analysis prunes changes irrelevant to an application and clusters relevant ones into targets. Dynamic tracing needs to focus only on whether targets affect an application, making it fast and accurate. UPGRADVISOR handles dynamic interpreted languages and introduces call graph over-approximation to account for their lack of type information and selective hardware tracing to capture program execution while ignoring interpreter machinery. We have implemented UPGRADVISOR for Python and evaluated it on 172 dependency updates previously blocked from being adopted in widely-used open-source software, including Django, aws-cli, tfx, and Celery. UPGRADVISOR automatically determined that 56% of dependencies were safe to update and reduced by more than an order of magnitude the number of code changes that needed to be considered by dynamic tracing. Evaluating UPGRADVISOR’s tracer in a production-like environment incurred only 3% overhead on average, making it fast enough to deploy in practice. We submitted safe updates that were previously blocked as pull requests for nine projects, and their developers have already merged most of them. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    There is more than a decade-long history of using static analysis to find bugs in systems such as Linux. Most of the existing static analyses developed for these systems are simple checkers that find bugs based on pattern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been employed to improve checkers for systems code due to their complex implementations and poor scalability. In this article, we revisit the scalability problem of interprocedural static analysis from a “Big Data” perspective. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing techniques to solve this traditional programming language problem. We propose Graspan , a disk-based parallel graph system that uses an edge-pair centric computation model to compute dynamic transitive closures on very large program graphs. We develop two backends for Graspan, namely, Graspan-C running on CPUs and Graspan-G on GPUs, and present their designs in the article. Graspan-C can analyze large-scale systems code on any commodity PC, while, if GPUs are available, Graspan-G can be readily used to achieve orders of magnitude speedup by harnessing a GPU’s massive parallelism. We have implemented fully context-sensitive pointer/alias and dataflow analyses on Graspan. An evaluation of these analyses on large codebases written in multiple languages such as Linux and Apache Hadoop demonstrates that their Graspan implementations are language-independent, scale to millions of lines of code, and are much simpler than their original implementations. Moreover, we show that these analyses can be used to uncover many real-world bugs in large-scale systems code. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)