Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We propose a deductive synthesis framework for constructing reinforcement learning (RL) agents that provably satisfy temporal reach-avoid specifications over infinite horizons. Our approach decomposes these temporal specifications into a sequence of finite-horizon subtasks, for which we synthesize individual RL policies. Using formal verification techniques, we ensure that the composition of a finite number of subtask policies guarantees satisfaction of the overall specification over infinite horizons. Experimental results on a suite of benchmarks show that our synthesized agents outperform standard RL methods in both task performance and compliance with safety and temporal requirements.more » « lessFree, publicly-accessible full text available July 23, 2026
-
Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach. Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-guided program synthesis framework that automatically derives robot state and action abstractions from raw, unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment. RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency.more » « lessFree, publicly-accessible full text available October 1, 2026
-
We propose a deductive synthesis framework for construct- ing reinforcement learning (RL) agents that provably satisfy temporal reach-avoid specifications over infinite horizons. Our approach decomposes these temporal specifications into a sequence of finite-horizon subtasks, for which we synthesize individual RL policies. Using formal verification techniques, we ensure that the composition of a finite number of subtask policies guarantees satisfaction of the overall specification over infinite horizons. Experimental results on a suite of benchmarks show that our synthesized agents outperform standard RL methods in both task performance and compliance with safety and temporal requirements.more » « lessFree, publicly-accessible full text available July 21, 2026
-
We introduce VELM, a reinforcement learning (RL) framework grounded in verification principles for safe exploration in unknown environments. VELM ensures that an RL agent systematically explores its environment, adhering to safety properties throughout the learning process. VELM learns environment models as symbolic formulas and conducts formal reachability analysis over the learned models for safety verification. An online shielding layer is then constructed to confine the RL agent’s exploration solely within a state space verified as safe in the learned model, thereby bolstering the overall safety profile of the RL system. Our experimental results demonstrate the efficacy of VELM across diverse RL environments, highlighting its capacity to significantly reduce safety violations in comparison to existing safe learning techniques, all without compromising the RL agent’s reward performance.more » « less
-
Goal-conditioned reinforcement learning (RL) is a powerful approach for learning general-purpose skills by reaching diverse goals. However, it has limitations when it comes to task-conditioned policies, where goals are specified by temporally extended instructions written in the Linear Temporal Logic (LTL) formal language. Existing approaches for finding LTL-satisfying policies rely on sampling a large set of LTL instructions during training to adapt to unseen tasks at inference time. However, these approaches do not guarantee generalization to out-of-distribution LTL objectives, which may have increased complexity. In this paper, we propose a novel approach to address this challenge. We show that simple goal-conditioned RL agents can be instructed to follow arbitrary LTL specifications without additional training over the LTL task space. Unlike existing approaches that focus on LTL specifications expressible as regular expressions, our technique is unrestricted and generalizes to ω-regular expressions. Experiment results demonstrate the effectiveness of our approach in adapting goal-conditioned RL agents to satisfy complex temporal logic task specifications zero-shot.more » « less
-
We present a verification-based learning framework VEL that synthesizes safe programmatic controllers for environments with continuous state and action spaces. The key idea is the integration of program reasoning techniques into controller training loops. VEL performs abstraction-based program verification to reason about a programmatic controller and its environment as a closed-loop system. Based on a novel verification-guided synthesis loop for training, VEL minimizes the amount of safety violation in the proof space of the system, which approximates the worst-case safety loss, using gradient-descent style optimization. Experimental results demonstrate the substantial benefits of leveraging verification feedback for synthesizing provably correct controllers.more » « less
-
Deep reinforcement learning (RL) has led to encouraging successes in many challenging control tasks. However, a deep RL model lacks interpretability due to the difficulty of identifying how the model's control logic relates to its network structure. Programmatic policies structured in more interpretable representations emerge as a promising solution. Yet two shortcomings remain: First, synthesizing programmatic policies requires optimizing over the discrete and non-differentiable search space of program architectures. Previous works are suboptimal because they only enumerate program architectures greedily guided by a pretrained RL oracle. Second, these works do not exploit compositionality, an important programming concept, to reuse and compose primitive functions to form a complex function for new tasks. Our first contribution is a programmatically interpretable RL framework that conducts program architecture search on top of a continuous relaxation of the architecture space defined by programming language grammar rules. Our algorithm allows policy architectures to be learned with policy parameters via bilevel optimization using efficient policy-gradient methods, and thus does not require a pretrained oracle. Our second contribution is improving programmatic policies to support compositionality by integrating primitive functions learned to grasp task-agnostic skills as a composite program to solve novel RL problems. Experiment results demonstrate that our algorithm excels in discovering optimal programmatic policies that are highly interpretable.more » « less
-
Ivrii, Alexander; Strichman, Ofer (Ed.)Artificial Neural Networks (ANNs) have demonstrated remarkable utility in various challenging machine learning applications. While formally verified properties of their behaviors are highly desired, they have proven notoriously difficult to derive and enforce. Existing approaches typically formulate this problem as a post facto analysis process. In this paper, we present a novel learning framework that ensures such formal guarantees are enforced by construction. Our technique enables training provably correct networks with respect to a broad class of safety properties, a capability that goes well-beyond existing approaches, without compromising much accuracy. Our key insight is that we can integrate an optimization-based abstraction refinement loop into the learning process and operate over dynamically constructed partitions of the input space that considers accuracy and safety objectives synergistically. The refinement procedure iteratively splits the input space from which training data is drawn, guided by the efficacy with which such partitions enable safety verification. We have implemented our approach in a tool (ART) and applied it to enforce general safety properties on unmanned aviator collision avoidance system ACAS Xu dataset and the Collision Detection dataset. Importantly, we empirically demonstrate that realizing safety does not come at the price of much accuracy. Our methodology demonstrates that an abstraction refinement methodology provides a meaningful pathway for building both accurate and correct machine learning networks.more » « less
An official website of the United States government

Full Text Available