skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2008468

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2025
  2. Free, publicly-accessible full text available July 8, 2025
  3. Distributed denial of service (DDoS) attacks have been prevalent on the Internet for decades. Albeit various defenses, they keep growing in size, frequency, and duration. The new network paradigm, Software-defined networking (SDN), is also vulnerable to DDoS attacks. SDN uses logically centralized control, bringing the advantages in maintaining a global network view and simplifying programmability. When attacks happen, the control path between the switches and their associated controllers may become congested due to their limited capacity. However, the data plane visibility of SDN provides new opportunities to defend against DDoS attacks in the cloud computing environment. To this end, we conduct measurements to evaluate the throughput of the software control agents on some of the hardware switches when they are under attacks. Then, we design a new mechanism, calledScotch, to enable the network to scale up its capability and handle the DDoS attack traffic. In our design, the congestion works as an indicator to trigger the mitigation mechanism.Scotchelastically scales up the control plane capacity by using an Open vSwitch-based overlay.Scotchtakes advantage of both the high control plane capacity of a large number of vSwitches and the high data plane capacity of commodity physical switches to increase the SDN network scalability and resiliency under abnormal (e.g., DDoS attacks) traffic surges. We have implemented a prototype and experimentally evaluatedScotch. Our experiments in the small-scale lab environment and large-scale GENI testbed demonstrate thatScotchcan elastically scale up the control channel bandwidth upon attacks. 
    more » « less