skip to main content


Search for: All records

Award ID contains: 2009193

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    By means of 3D hydrodynamic simulations, we explore the effects of rotation in the formation of second-generation (SG) stars in globular clusters (GC). Our simulations follow the SG formation in a first-generation (FG) internally rotating GC; SG stars form out of FG asymptotic giant branch (AGB) ejecta and external pristine gas accreted by the system. We have explored two different initial rotational velocity profiles for the FG cluster and two different inclinations of the rotational axis with respect to the direction of motion of the external infalling gas, whose density has also been varied. For a low (10−24 g cm−3) external gas density, a disc of SG helium-enhanced stars is formed. The SG is characterized by distinct chemo-dynamical phase space patterns: it shows a more rapid rotation than the FG with the helium-enhanced SG subsystem rotating more rapidly than the moderate helium-enhanced one. In models with high external gas density ($10^{-23}\, {\rm g\ cm^{-3}}$), the inner SG disc is disrupted by the early arrival of external gas and only a small fraction of highly enhanced helium stars preserves the rotation acquired at birth. Variations in the inclination angle between the rotation axis and the direction of the infalling gas and the velocity profile can slightly alter the extent of the stellar disc and the rotational amplitude. The results of our simulations illustrate the complex link between dynamical and chemical properties of multiple populations and provide new elements for the interpretation of observational studies and future investigations of the dynamics of multiple-population GCs.

     
    more » « less
  2. ABSTRACT

    We introduce a new set of zoom-in cosmological simulations with sub-pc resolution, intended to model extremely faint, highly magnified star-forming stellar clumps, detected at z = 6.14 thanks to gravitational lensing. The simulations include feedback from individual massive stars (in both the pre-supernova and supernova phases), generated via stochastic, direct sampling of the stellar initial mass function. We adopt a modified ‘delayed cooling’ feedback scheme, specifically created to prevent artificial radiative loss of the energy injected by individual stars in very dense gas (n ∼ 103–105 cm−3). The sites where star formation ignites are characterized by maximum densities of the order of 105 cm−3 and gravitational pressures Pgrav/k >107 K cm−3, corresponding to the values of the local, turbulent regions where the densest stellar aggregates form. The total stellar mass at z = 6.14 is 3.4$\times 10^7~\rm M_{\odot }$, in satisfactory agreement with the observed stellar mass of the observed systems. The most massive clumps have masses of $\sim 10^6~\rm M_{\odot }$ and half-mass sizes of ∼100 pc. These sizes are larger than the observed ones, including also other samples of lensed high-redshift clumps, and imply an average density one orders of magnitude lower than the observed one. In the size–mass plane, our clumps populate a sequence that is intermediate between the ones of observed high-redshift clumps and local dSph galaxies.

     
    more » « less
  3. Abstract Recent work on metal-intermediate globular clusters (GCs) with [Fe/H] = −1.5 and −0.75 has illustrated the theoretical behavior of multiple populations in photometric diagrams obtained with the JWST. These results are confirmed by observations of multiple populations among the M dwarfs of 47 Tucanae. Here we explore multiple populations in metal-poor GCs with [Fe/H] = −2.3. We take advantage of synthetic spectra and isochrones that account for the chemical composition of multiple populations to identify photometric diagrams that separate the distinct stellar populations of GCs. We derive high-precision photometry and proper motion for main-sequence (MS) stars in the metal-poor GC M92 from JWST and Hubble Space Telescope images. We identify a first-generation (1G) and two main groups of second-generation (2G A and 2G B ) stars and investigate their kinematics and chemical composition. We find isotropic motions with no differences among the distinct populations. The comparison between the observed colors of the M92 stars and the colors derived by synthetic spectra reveals that the helium abundances of 2G A and 2G B stars are higher than those of the 1G by Δ Y ∼ 0.01 and 0.04, respectively. The m F090W versus m F090W − m F277W color–magnitude diagram shows that below the knee MS stars exhibit a wide color broadening due to multiple populations. We constrain the amount of oxygen variation needed to reproduce the observed MS width, which is consistent with results on red giant branch stars. We conclude that multiple populations with masses of ∼0.1–0.8 M ⊙ share similar chemical compositions. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract Our understanding of the kinematic properties of multiple stellar populations (mPOPs) in Galactic globular clusters (GCs) is still limited compared to what we know about their chemical and photometric characteristics. Such limitation arises from the lack of a comprehensive observational investigation of this topic. Here we present the first homogeneous kinematic analysis of mPOPs in 56 GCs based on high-precision proper motions computed with Hubble Space Telescope data. We focused on red-giant-branch stars, for which the mPOP tagging is clearer, and measured the velocity dispersion of stars belonging to first (1G) and second generations (2G). We find that 1G stars are generally kinematically isotropic even at the half-light radius, whereas 2G stars are isotropic at the center and become radially anisotropic before the half-light radius. The radial anisotropy is induced by a lower tangential velocity dispersion of 2G stars with respect to the 1G population, while the radial component of the motion is comparable. We also show possible evidence that the kinematic properties of mPOPs are affected by the Galactic tidal field, corroborating previous observational and theoretical results suggesting a relation between the strength of the external tidal field and some properties of mPOPs. Although limited to the GCs’ central regions, our analysis leads to new insights into the mPOP phenomenon, and provides the motivation for future observational studies of the internal kinematics of mPOPs. 
    more » « less
  5. Abstract A number of studies based on the data collected by the Hubble Space Telescope (HST) GO-13297 program “HST Legacy Survey of Galactic Globular Clusters: Shedding UV Light on Their Populations and Formation” have investigated the photometric properties of a large sample of Galactic globular clusters and revolutionized our understanding of their stellar populations. In this paper, we expand upon previous studies by focusing our attention on the stellar clusters’ internal kinematics. We computed proper motions for stars in 56 globular clusters and one open cluster by combining the GO-13297 images with archival HST data. The astrophotometric catalogs released with this paper represent the most complete and homogeneous collection of proper motions of stars in the cores of stellar clusters to date, and expand the information provided by the current (and future) Gaia data releases to much fainter stars and into the crowded central regions. We also census the general kinematic properties of stellar clusters by computing the velocity dispersion and anisotropy radial profiles of their bright members. We study the dependence on concentration and relaxation time, and derive dynamical distances. Finally, we present an in-depth kinematic analysis of the globular cluster NGC 5904. 
    more » « less
  6. ABSTRACT Disentangling distinct stellar populations along the red-giant branches (RGBs) of globular clusters (GCs) is possible by using the pseudo-two-colour diagram dubbed chromosome map (ChM). One of the most intriguing findings is that the so-called first-generation (1G) stars, characterized by the same chemical composition of their natal cloud, exhibit extended sequences in the ChM. Unresolved binaries and internal variations in helium or metallicity have been suggested to explain this phenomenon. Here, we derive high-precision Hubble Space Telescope photometry of the GCs NGC 6362 and NGC 6838 and build their ChMs. We find that both 1G RGB and main-sequence (MS) stars exhibit wider ChM sequences than those of second-generation (2G). The evidence of this feature even among unevolved 1G MS stars indicates that chemical inhomogeneities are imprinted in the original gas. We introduce a pseudo-two-magnitude diagram to distinguish between helium and metallicity, and demonstrate that star-to-star metallicity variations are responsible for the extended 1G sequence. Conversely, binaries provide a minor contribution to the phenomenon. We estimate that the metallicity variations within 1G stars of 55 GCs range from less than [Fe/H]∼0.05 to ∼0.30 and mildly correlate with cluster mass. We exploit these findings to constrain the formation scenarios of multiple populations showing that they are qualitatively consistent with the occurrence of multiple generations. In contrast, the fact that 2G stars have more homogeneous iron content than the 1G challenges the scenarios based on accretion of material processed in massive 1G stars on to existing protostars. 
    more » « less
  7. Abstract Recent work has shown that near-infrared (NIR) Hubble Space Telescope (HST) photometry allows us to disentangle multiple populations (MPs) among M dwarfs of globular clusters (GCs) and to investigate this phenomenon in very-low-mass (VLM) stars. Here, we present the color–magnitude diagrams of nine GCs and the open cluster NGC 6791 in the F110W and F160W bands of HST, showing that the main sequences (MSs) below the knee are either broadened or split, thus providing evidence of MPs among VLM stars. In contrast, the MS of NGC 6791 is consistent with a single population. The color distribution of M dwarfs dramatically changes between different GCs, and the color width correlates with the cluster mass. We conclude that the MP ubiquity, variety, and dependence on GC mass are properties common to VLM and more-massive stars. We combined UV, optical, and NIR observations of NGC 2808 and NGC 6121 (M4) to identify MPs along with a wide range of stellar masses (∼0.2–0.8  ⊙ ), from the MS turnoff to the VLM regime, and measured, for the first time, their mass functions (MFs). We find that the fraction of MPs does not depend on the stellar mass and that their MFs have similar slopes. These findings indicate that the properties of MPs do not depend on stellar mass. In a scenario where the second generations formed in higher-density environments than the first generations, the possibility that the MPs formed with the same initial MF would suggest that it does not depend on the environment. 
    more » « less
  8. Abstract We present Hubble Space Telescope (HST) photometric results for NGC 6402, a highly reddened, very luminous Galactic globular cluster (GC). Recent spectroscopic observations of its red giant stars have shown a quite peculiar behavior in the chemistry of its multiple populations. These results have prompted UV and optical HST observations aimed at obtaining the cluster’s “chromosome map” (ChM), an efficient tool for classifying GCs and characterizing their multiple populations. We find that the discontinuity in the abundance distributions of O, Mg, Al, and Na inferred from spectroscopy is more nuanced in the ChM, which is mostly sensitive to nitrogen. Nevertheless, photometry in optical bands reveals a double main sequence, indicating a discontinuity in the helium content of the populations. The population with the largest chemical anomalies (extreme) peaks at a helium mass fraction Y ∼ 0.31. This helium content is consistent with results from the analysis of the distribution of horizontal branch stars and the spectrophotometry of the red giants. The ChM and the color–magnitude diagrams are compared with those of NGC 2808, a prototype GC with helium abundances up to Y ≳ 0.35, and both confirm that NGC 6402 does not host stellar populations with such extreme helium content. Further, the ChM reveals the presence of a group of stars with higher metallicity, thus indicating that NGC 6402 is a Type II cluster. The modalities of formation of the multiple populations in NGC 6402 are briefly surveyed, with main attention on the asymptotic giant branch and supermassive star models, and on possible cluster merging. 
    more » « less
  9. null (Ed.)
    ABSTRACT By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second-generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first generation asymptotic giant branch (AGB) stars start releasing their ejecta; during this phase, external gas is accreted by the system and SNe Ia begin exploding, carving hot and tenuous bubbles. Given the large uncertainty on SNe Ia explosion times, we test two different values for the ‘delay time’. We run two different models for the external gas density: in the low-density scenario with short delay time, the explosions start at the beginning of the SG star formation, halting it in its earliest phases. The external gas hardly penetrates the system, therefore most SG stars present extreme helium abundances (Y > 0.33). The low-density model with delayed SN explosions has a more extended SG star formation epoch and includes SG stars with modest helium enrichment. On the contrary, the high-density model is weakly affected by SN explosions, with a final SG mass similar to the one obtained without SNe Ia. Most of the stars form from a mix of AGB ejecta and pristine gas and have a modest helium enrichment. We show that gas from SNe Ia may produce an iron spread of ∼0.14 dex, consistent with the spread found in about $20{{\ \rm per\ cent}}$ of Galactic GCs, suggesting that SNe Ia might have played a key role in the formation of this sub-sample of GCs. 
    more » « less
  10. null (Ed.)
    ABSTRACT We present a detailed 3D kinematic analysis of the central regions (R < 30 arcsec) of the low mass and dynamically evolved galactic globular cluster (GC) NGC 6362. The study is based on data obtained with ESO-VLT/MUSE used in combination with the adaptive optics module and providing ∼3000 line-of-sight radial velocities, which have been complemented with Hubble Space Telescope proper motions. The quality of the data and the number of available radial velocities allowed us to detect for the first time a significant rotation signal along the line of sight in the cluster core with amplitude of ∼1 km s−1 and with a peak located at only ∼20 arcsec from the cluster centre, corresponding to only ${\sim}10{{\ \rm per\ cent}}$ of the cluster half-light radius. This result is further supported by the detection of a central and significant tangential anisotropy in the cluster innermost regions. This is one of the most central rotation signals ever observed in a GC to date. We also explore the rotational properties of the multiple populations hosted by this cluster and find that Na-rich stars rotate about two times more rapidly than the Na-poor sub-population thus suggesting that the interpretation of the present-day GC properties require a multicomponent chemo-dynamical approach. Both the rotation amplitude and peak position would fit qualitatively the theoretical expectations for a system that lost a significant fraction of its original mass because of the long-term dynamical evolution and interaction with the Galaxy. However, to match the observations more quantitatively further theoretical studies to explore the initial dynamical properties of the cluster are needed. 
    more » « less