skip to main content

Title: The role of rotation on the formation of second generation stars in globular clusters

By means of 3D hydrodynamic simulations, we explore the effects of rotation in the formation of second-generation (SG) stars in globular clusters (GC). Our simulations follow the SG formation in a first-generation (FG) internally rotating GC; SG stars form out of FG asymptotic giant branch (AGB) ejecta and external pristine gas accreted by the system. We have explored two different initial rotational velocity profiles for the FG cluster and two different inclinations of the rotational axis with respect to the direction of motion of the external infalling gas, whose density has also been varied. For a low (10−24 g cm−3) external gas density, a disc of SG helium-enhanced stars is formed. The SG is characterized by distinct chemo-dynamical phase space patterns: it shows a more rapid rotation than the FG with the helium-enhanced SG subsystem rotating more rapidly than the moderate helium-enhanced one. In models with high external gas density ($10^{-23}\, {\rm g\ cm^{-3}}$), the inner SG disc is disrupted by the early arrival of external gas and only a small fraction of highly enhanced helium stars preserves the rotation acquired at birth. Variations in the inclination angle between the rotation axis and the direction of the infalling gas and the velocity profile can slightly alter the extent of the stellar disc and the rotational amplitude. The results of our simulations illustrate the complex link between dynamical and chemical properties of multiple populations and provide new elements for the interpretation of observational studies and future investigations of the dynamics of multiple-population GCs.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 1171-1188
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second-generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first generation asymptotic giant branch (AGB) stars start releasing their ejecta; during this phase, external gas is accreted by the system and SNe Ia begin exploding, carving hot and tenuous bubbles. Given the large uncertainty on SNe Ia explosion times, we test two different values for the ‘delay time’. We run two different models for the external gas density: in the low-density scenario with short delay time, the explosions start at the beginning of the SG star formation, halting it in its earliest phases. The external gas hardly penetrates the system, therefore most SG stars present extreme helium abundances (Y > 0.33). The low-density model with delayed SN explosions has a more extended SG star formation epoch and includes SG stars with modest helium enrichment. On the contrary, the high-density model is weakly affected by SN explosions, with a final SG mass similar to the one obtained without SNe Ia. Most of the stars form from a mix of AGB ejecta and pristine gas and have a modest helium enrichment. We show that gas from SNe Ia may produce an iron spread of ∼0.14 dex, consistent with the spread found in about $20{{\ \rm per\ cent}}$ of Galactic GCs, suggesting that SNe Ia might have played a key role in the formation of this sub-sample of GCs. 
    more » « less

    We study the present-day rotational velocity (Vrot) and velocity dispersion (σ) profiles of the globular cluster (GC) systems in a sample of 50 lenticular (S0) galaxies from the E-MOSAICS galaxy formation simulations. We find that $82{{\ \rm per\ cent}}$ of the galaxies have GCs that are rotating along the photometric major axis of the galaxy (aligned), while the remaining $18{{\ \rm per\ cent}}$ of the galaxies do not (misaligned). This is generally consistent with the observations from the SLUGGS survey. For the aligned galaxies, classified as peaked and outwardly decreasing ($49{{\ \rm per\ cent}}$), flat ($24{{\ \rm per\ cent}}$), and increasing ($27{{\ \rm per\ cent}}$) based on the Vrot/σ profiles out to large radii, we do not find any clear correlation between these present-day Vrot/σ profiles of the GCs and the past merger histories of the S0 galaxies, unlike in previous simulations of galaxy stars. For just over half of the misaligned galaxies, we find that the GC misalignment is the result of a major merger within the last $10\, \mathrm{Gyr}$ so that the ex-situ GCs are misaligned by an angle between 0° (co-rotation) and 180° (counter-rotation), with respect to the in situ GCs, depending on the orbital configuration of the merging galaxies. For the remaining misaligned galaxies, we suggest that the in situ metal-poor GCs, formed at early times, have undergone more frequent kinematic perturbations than the in situ metal-rich GCs. We also find that the GCs accreted early and the in situ GCs are predominantly located within 0.2 virial radii (R200) from the centre of galaxies in 3D phase-space diagrams.

    more » « less
  3. Abstract In this paper, we continue our study on the evolution of black holes (BHs) that receive velocity kicks at the origin of their host star cluster potential. We now focus on BHs in rotating clusters that receive a range of kick velocities in different directions with respect to the rotation axis. We perform N-body simulations to calculate the trajectories of the kicked BHs and develop an analytic framework to study their motion as a function of the host cluster and the kick itself. Our simulations indicate that for a BH that is kicked outside of the cluster’s core, as its orbit decays in a rotating cluster the BH will quickly gain angular momentum as it interacts with stars with high rotational frequencies. Once the BH decays to the point where its orbital frequency equals that of local stars, its orbit will be circular and dynamical friction becomes ineffective since local stars will have low relative velocities. After circularization, the BH’s orbit decays on a longer time-scale than if the host cluster was not rotating. Hence BHs in rotating clusters will have longer orbital decay times. The time-scale for orbit circularization depends strongly on the cluster’s rotation rate and the initial kick velocity, with kicked BHs in slowly rotating clusters being able to decay into the core before circularization occurs. The implication of the circularization phase is that the probability of a BH undergoing a tidal capture event increases, possibly aiding in the formation of binaries and high-mass BHs. 
    more » « less

    We study the kinematics of stars both at their formation and today within 14 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. We quantify the relative importance of cosmological disc settling and post-formation dynamical heating. We identify three eras: a Pre-Disc Era (typically ≳ 8 Gyr ago), when stars formed on dispersion-dominated orbits; an Early-Disc Era (≈8–4 Gyr ago), when stars started to form on rotation-dominated orbits but with high velocity dispersion, σform; and a Late-Disc Era (≲ 4 Gyr ago), when stars formed with low σform. σform increased with time during the Pre-Disc Era, peaking ≈8 Gyr ago, then decreased throughout the Early-Disc Era as the disc settled and remained low throughout the Late-Disc Era. By contrast, the dispersion measured today, σnow, increases monotonically with age because of stronger post-formation heating for Pre-Disc stars. Importantly, most of σnow was in place at formation, not added post-formation, for stars younger than ≈10 Gyr. We compare the evolution of the three velocity components: at all times, σR, form > σϕ, form > σZ, form. Post-formation heating primarily increased σR at ages ≲ 4 Gyr but acted nearly isotropically for older stars. The kinematics of young stars in FIRE-2 broadly agree with the range observed across the MW, M31, M33, and PHANGS-MUSE galaxies. The lookback time that the disc began to settle correlates with its dynamical state today: earlier-settling galaxies currently form colder discs. Including stellar cosmic-ray feedback does not significantly change disc rotational support at fixed stellar mass.

    more » « less
  5. Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He  I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P  = 367.7 ± 0.1 d, approximately twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d  = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1  = 12.2 ± 2.2  M ⊙ and M 2  = 4.9 ± 0.5  M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He  I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage. 
    more » « less