skip to main content


Search for: All records

Award ID contains: 2009251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Studies of cosmology, galaxy evolution, and astronomical transients with current and next-generation wide-field imaging surveys like the Rubin Observatory Legacy Survey of Space and Time are all critically dependent on estimates of photometric redshifts. Capsule networks are a new type of neural network architecture that is better suited for identifying morphological features of the input images than traditional convolutional neural networks. We use a deep capsule network trained on ugriz images, spectroscopic redshifts, and Galaxy Zoo spiral/elliptical classifications of ∼400 000 Sloan Digital Sky Survey galaxies to do photometric redshift estimation. We achieve a photometric redshift prediction accuracy and a fraction of catastrophic outliers that are comparable to or better than current methods for SDSS main galaxy sample-like data sets (r ≤ 17.8 and zspec ≤ 0.4) while requiring less data and fewer trainable parameters. Furthermore, the decision-making of our capsule network is much more easily interpretable as capsules act as a low-dimensional encoding of the image. When the capsules are projected on a two-dimensional manifold, they form a single redshift sequence with the fraction of spirals in a region exhibiting a gradient roughly perpendicular to the redshift sequence. We perturb encodings of real galaxy images in this low-dimensional space to create synthetic galaxy images that demonstrate the image properties (e.g. size, orientation, and surface brightness) encoded by each dimension. We also measure correlations between galaxy properties (e.g. magnitudes, colours, and stellar mass) and each capsule dimension. We publicly release our code, estimated redshifts, and additional catalogues at https://biprateep.github.io/encapZulate-1.

     
    more » « less
  2. Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift — i.e., the fraction of times the true redshift falls between two limits z1 and z2 should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs resulting in calibrated predictive distributions. Though we focus on an example from astrophysics, our method can produce predictive distributions which are calibrated at all locations in feature space for any use case. 
    more » « less
  3. Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift -- i.e., the fraction of times the true redshift falls between two limits z1 and z2 should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs. Though we focus on an example from astrophysics, our method can produce PDFs which are calibrated at all locations in feature space for any use case. 
    more » « less