skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Re-calibrating Photometric Redshift Probability Distributions Using Feature-space Regression
Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift -- i.e., the fraction of times the true redshift falls between two limits z1 and z2 should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs. Though we focus on an example from astrophysics, our method can produce PDFs which are calibrated at all locations in feature space for any use case.  more » « less
Award ID(s):
2009251
PAR ID:
10332320
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift — i.e., the fraction of times the true redshift falls between two limits z1 and z2 should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs resulting in calibrated predictive distributions. Though we focus on an example from astrophysics, our method can produce predictive distributions which are calibrated at all locations in feature space for any use case. 
    more » « less
  2. Abstract The accurate estimation of photometric redshifts is crucial to many upcoming galaxy surveys, for example, the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). Almost all Rubin extragalactic and cosmological science requires accurate and precise calculation of photometric redshifts; many diverse approaches to this problem are currently in the process of being developed, validated, and tested. In this work, we use the photometric redshift code GPz to examine two realistically complex training set imperfections scenarios for machine learning based photometric redshift calculation: (i) where the spectroscopic training set has a very different distribution in color–magnitude space to the test set, and (ii) where the effect of emission line confusion causes a fraction of the training spectroscopic sample to not have the true redshift. By evaluating the sensitivity of GPz to a range of increasingly severe imperfections, with a range of metrics (both of photo- z point estimates as well as posterior probability distribution functions, PDFs), we quantify the degree to which predictions get worse with higher degrees of degradation. In particular, we find that there is a substantial drop-off in photo- z quality when line-confusion goes above ∼1%, and sample incompleteness below a redshift of 1.5, for an experimental setup using data from the Buzzard Flock synthetic sky catalogs. 
    more » « less
  3. ABSTRACT We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods. 
    more » « less
  4. A method is presented for predicting the space group of a structure given a calculated or measured atomic pair distribution function (PDF) from that structure. The method utilizes machine learning models trained on more than 100 000 PDFs calculated from structures in the 45 most heavily represented space groups. In particular, a convolutional neural network (CNN) model is presented which yields a promising result in that it correctly identifies the space group among the top-6 estimates 91.9% of the time. The CNN model also successfully identifies space groups for 12 out of 15 experimental PDFs. Interesting aspects of the failed estimates are discussed, which indicate that the CNN is failing in similar ways as conventional indexing algorithms applied to conventional powder diffraction data. This preliminary success of the CNN model shows the possibility of model-independent assessment of PDF data on a wide class of materials. 
    more » « less
  5. null (Ed.)
    ABSTRACT Cosmological analyses of galaxy surveys rely on knowledge of the redshift distribution of their galaxy sample. This is usually derived from a spectroscopic and/or many-band photometric calibrator survey of a small patch of sky. The uncertainties in the redshift distribution of the calibrator sample include a contribution from shot noise, or Poisson sampling errors, but, given the small volume they probe, they are dominated by sample variance introduced by large-scale structures. Redshift uncertainties have been shown to constitute one of the leading contributions to systematic uncertainties in cosmological inferences from weak lensing and galaxy clustering, and hence they must be propagated through the analyses. In this work, we study the effects of sample variance on small-area redshift surveys, from theory to simulations to the COSMOS2015 data set. We present a three-step Dirichlet method of resampling a given survey-based redshift calibration distribution to enable the propagation of both shot noise and sample variance uncertainties. The method can accommodate different levels of prior confidence on different redshift sources. This method can be applied to any calibration sample with known redshifts and phenotypes (i.e. cells in a self-organizing map, or some other way of discretizing photometric space), and provides a simple way of propagating prior redshift uncertainties into cosmological analyses. As a worked example, we apply the full scheme to the COSMOS2015 data set, for which we also present a new, principled SOM algorithm designed to handle noisy photometric data. We make available a catalogue of the resulting resamplings of the COSMOS2015 galaxies. 
    more » « less